日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (8): 1006-1016.doi: 10.3969/j.issn.2097-2806.2025.08.007
张婉萍1,2,孟德旭1,2,刘凯凯1,2,王平礼3,张倩洁1,2,*(),李成亮3,*(
)
收稿日期:
2024-09-19
修回日期:
2025-07-29
出版日期:
2025-08-22
发布日期:
2025-08-28
Wanping Zhang1,2,Dexu Meng1,2,Kaikai Liu1,2,Pingli Wang3,Qianjie Zhang1,2,*(),Chengliang Li3,*(
)
Received:
2024-09-19
Revised:
2025-07-29
Online:
2025-08-22
Published:
2025-08-28
Contact:
*E-mail: zhangqj_sit@126.com;richard-li@laibo.com.cn.
摘要:
由天然来源的大分子多糖改性制备的双亲性聚合物可以将大分子自组装拓展到实际应用领域。文章以多巴胺改性透明质酸钠为研究对象,通过改变自组装环境中离子的强度和种类,对多巴胺改性透明质酸钠的组装行为和乳化性能进行研究。结果表明,多巴胺改性透明质酸钠可以在水溶液中自组装形成纳米颗粒结构并吸附在油/水界面处,起到稳定乳液的作用。基于不同的离子配位作用,钠离子和锰离子分别通过静电作用和螯合作用影响多巴胺改性透明质酸钠的组装行为和乳化性能。随着体系中钠离子的浓度的增加,聚合物颗粒的粒径减小,但乳化性能降低,制备乳液的液滴增大;而随着体系中锰离子浓度的增加,聚合物颗粒的粒径减小且乳化性能提升,制备乳液的液滴减小。
中图分类号:
张婉萍, 孟德旭, 刘凯凯, 王平礼, 张倩洁, 李成亮. 基于离子配位的多巴胺改性透明质酸钠组装行为及乳化性能[J]. 日用化学工业(中英文), 2025, 55(8): 1006-1016.
Wanping Zhang, Dexu Meng, Kaikai Liu, Pingli Wang, Qianjie Zhang, Chengliang Li. Assembly behavior and emulsification property of dopamine modified sodium hyaluronate based on ionic coordination[J]. China Surfactant Detergent & Cosmetics, 2025, 55(8): 1006-1016.
[1] | Kuperkar Ketan, Patel Dhruvi, et al. Atanase Leonard Ionut, Amphiphilic block copolymers: their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles[J]. Polymers, 2022, 14 (21) : 4702. |
[2] |
Yi Chenglin, Yang Yiqun, Zhu Ye, et al. Self-assembly and emulsification of poly {[styrene-alt-maleic acid]-co-[styrene-alt-(N-3, 4-dihydroxyphenylethyl-maleamic acid)]}[J]. Langmuir, 2012, 28 (25) : 9211-9222.
doi: 10.1021/la301605a pmid: 22639900 |
[3] | Wang Feng, Yu Xiaoyun, Yang Zhouxiaoshuang, et al. Dual pH-and light-responsive amphiphilic random copolymer nanomicelles as particulate emulsifiers to stabilize the oil/water interface[J]. The Journal of Physical Chemistry C, 2018, 122 (33) : 18995-19003. |
[4] |
Wang Feng, Tang Juntao, Liu Hui, et al. Self-assembled polymeric micelles as amphiphilic particulate emulsifiers for controllable Pickering emulsions[J]. Materials Chemistry Frontiers, 2019, 3 (3) : 356-364.
doi: 10.1039/c8qm00540k |
[5] | Jabbari Farzaneh, Babaeipou Valiollah, Saharkhiz Saeed. Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications[J]. International Journal of Biological Macromolecules, 2023, 240: 124484. |
[6] | Iaconisi Giorgia Natalia, Lunetti Paola, Gallo Nunzia, et al. Hyaluronic acid: a powerful biomolecule with wide-ranging applications: A comprehensive review[J]. International Journal of Molecular Sciences, 2023, 24 (12) : 10296. |
[7] | Luo Zhiqiang, WangYu, Li Jinbo, et al. Tailoring hyaluronic acid hydrogels for biomedical applications[J]. Advanced Functional Materials, 2023, 33 (49) : 2306554. |
[8] | Li Shangzhi, Dong Qi, Peng Xiaotong, et al. Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration[J]. Acs Nano, 2022, 16 (7) : 11346-11359. |
[9] |
Lee Hyukjin, Lee Kyuri, Park Tae Gwan. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity[J]. Bioconjugate Chemistry, 2008, 19 (6) : 1319-1325.
doi: 10.1021/bc8000485 pmid: 18481885 |
[10] | Karimi-Soflou Reza, Karkhaneh Akbar. Redox-sensitive multifunctional hyaluronic acid-based nanomicelles with fine-controlled anticancer drug release[J]. International Journal of Pharmaceutics, 2022, 629: 122402. |
[11] | Sun Jiao, Li Min, Lin Kexin, et al. Delivery of quercetin for breast cancer and targeting potentiation via hyaluronic nano-micelles[J]. International Journal of Biological Macromolecules, 2023, 242: 124736. |
[12] |
Zhao Donghua, Zhu et al. Stable emulsions prepared by self-assembly of hyaluronic acid and chitosan for Papain loading[J]. Macromolecular Bioscience, 2015, 15 (4) : 558-567.
doi: 10.1002/mabi.201400486 pmid: 25594587 |
[13] | 诸超, 朱叶, 魏玮, 等. 香豆素改性透明质酸颗粒乳化剂的制备及应用[J]. 功能高分子学报, 2016, 29 (4) : 388-396. |
[14] | Zhang Cuige, Zhang Rongli, Zhu Ye, et al. Polymer vesicles prepared from the (l-phenylalanine ethyl ester)-modified hyaluronic acid[J]. Materials Letters, 2016, 164: 15-18. |
[15] | 冉海燕, 洪慧, 诸超, 等. 肉桂酸改性透明质酸颗粒乳化剂的制备及性能[J]. 功能高分子学报, 2019, 32 (1) : 53-62. |
[16] | 张翠歌, 胡良, 孙元峰, 等. 基于透明质酸生物活性自组装胶体粒子制备及乳化性能[J]. 化学研究与应用, 2021, 33 (2) : 309-316. |
[17] | 范欣怡, 闫昕, 杨晗, 等. 基于透明质酸自组装胶体粒子功能乳液的制备及缓释性能[J]. 复合材料学报, 2023, 40 (10) : 5803-5810. |
[18] | Eenschooten Corinne, Guillaumie Fanny, Kontogeorgis Georgios M, et al. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride-modified hyaluronic acid derivatives[J]. Carbohydrate Polymers, 2010, 79 (3) : 597-605. |
[19] |
Payne William M, Svechkarev Denis, Kyrychenko Alexander, et al. The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly[J]. Carbohydrate Polymers, 2018, 182: 132-141.
doi: S0144-8617(17)31210-9 pmid: 29279107 |
[20] | Liu Wenxiu, Ding Lin, Xu Jiawen, et al. Synthesis of sinapic acid modified sodium hyaluronate particles and the one-step processing of multiple Pickering emulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644: 128785. |
[21] | 包舟杰, 王小永. 肉桂酸疏水改性透明质酸的聚集及其光谱性质[J]. 华东理工大学学报(自然科学版), 2024, 50 (3) : 371-376. |
[22] | Parrado Andrea Cecilia, Salaverry Luciana Soledad, Mangone Franco Mauricio, et al. Differential response of dopamine mediated by β-adrenergic receptors in human keratinocytes and macrophages: potential implication in wound healing[J]. Neuroimmunomodulation, 2018, 24(4/5): 282-291. |
[23] |
Clancy Sean K, Sodano Antonio, Cunningham Dylan J, et al. Marine bioinspired underwater contact adhesion[J]. Biomacromolecules, 2016, 17 (5) : 1869-1874.
doi: 10.1021/acs.biomac.6b00300 pmid: 27046671 |
[24] | Zhang Qianjie, Wang Pingli, Zhang Dongmei, et al. Surface modification of sodium hyaluronate with dopamine to enhance emulsifying capacity and application performance[J]. Colloid and Polymer Science, 2024: 1-13. |
[25] | 栾途. 透明质酸粘多糖的分子表征、流变学性质及其物理凝胶的研究[D]. 上海: 上海交通大学, 2012. |
[26] | Kocourková Karolína, Musilová Lenka, Smolka Petr, et al. Factors determining self-assembly of hyaluronan[J]. Carbohydrate Polymers, 2021, 254: 117307. |
[27] |
Zhu Ye, Wang Juanqin, Li Xiaojie, et al. Self-assembly and emulsification of dopamine-modified hyaluronan[J]. Carbohydrate Polymers, 2015, 123: 72-79.
doi: 10.1016/j.carbpol.2015.01.030 pmid: 25843836 |
[28] |
Zhang Cuige, Yang Suhan, Zhu Ye, et al. Formation of bowl-shaped nanoparticles by self-assembly of cinnamic acid-modified dextran[J]. Carbohydrate Polymers, 2015, 133: 637-643.
doi: 10.1016/j.carbpol.2015.07.035 pmid: 26344322 |
[29] | 张翠歌, 朱叶, 罗静, 等. Papain/HA-Phe自组装复合纳米粒子及乳化性能[J]. 高分子学报, 2016 (7) : 963-970. |
[30] |
Wu Shengfang, Ai Lianzhong, Chen Jie, et al. Study of the mechanism of formation of hyaluronan putty at pH 2.5: Part I. Experimental measurements[J]. Carbohydrate Polymers, 2013, 98 (2) : 1677-1682.
doi: 10.1016/j.carbpol.2013.05.088 pmid: 24053856 |
[31] | Snetkov Petr, Zakharova Kseniia, Morozkina Svetlana, et al. Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer[J]. Polymers, 2020, 12 (8) : 1800. |
[32] | Ondreas Frantisek, Dusankova Marcela, Sita Jaroslav, et al. Self-assembly of hydrophobically modified hyaluronic acid[J]. Applied Surface Science, 2021, 546: 149161. |
[33] | 易成林. 双亲大分子自组装胶束的乳化性能研究[D]. 无锡: 江南大学, 2013. |
[34] | Pal Sunirmal, Roy Saswati Ghosh, De Priyadarsi. Synthesis via RAFT polymerization of thermo-and pH-responsive random copolymers containing cholic acid moieties and their self-assembly in water[J]. Polymer Chemistry, 2014, 5 (4) : 1275-1284. |
[35] | Sanders Connor A, Werner Arthur, Smeltzer Sandra E, et al. Amphiphilic block random copolymers: influence of pH and ionic strength on aqueous solution properties[J]. Macromolecules, 2024, 57 (8) : 3484-3495. |
[36] | 徐伟, 俞蓉欣, 张相春, 等. 多酚自组装抗菌生物材料的构建及其应用进展[J]. 茶叶科学, 2024, 44 (1) : 1-15. |
[37] | Wei J, Zhang W, Mou X, et al. Bioinspired hemostatic and anti-infective armor for wound healing assisted by metal-phenol-polyamine system[J]. Advanced Functional Materials, 2024, 34 (4) : 15. |
[38] | Lin Z, Liu H, Richardson J J, et al. Metal-phenolic network composites: from fundamentals to applications[J]. Chemical Society Reviews, 2024, 53 (22) : 28. |
[39] | Fang Xiuqin, Zhao Xinyu, Yu Gaobo, et al. Effect of molecular weight and pH on the self-assembly microstructural and emulsification of amphiphilic sodium alginate colloid particles[J]. Food Hydrocolloids, 2020, 103: 105593. |
[40] | Clayton Katherine N, Salameh Janelle W,, Wereley Steven T, et al. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry[J]. Biomicrofluidics, 2016, 10 (5) : 054107. |
[41] | Li Moting, Sun Yawen, McClements David Julian, et al. Interfacial engineering approaches to improve emulsion performance: properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces[J]. Food Hydrocolloids, 2022, 133: 107938. |
[42] | 方秀琴. 两亲性海藻酸钠衍生物自组装行为和乳化性能的调控[D]. 海口: 海南大学, 2020. |
[43] |
Bresciani Guilherme, da Cruz Ivana Beatrice Mânica, González-Gallego Javier. Manganese superoxide dismutase and oxidative stress modulation[J]. Advances in Clinical Chemistry, 2015, 68: 87-130.
doi: 10.1016/bs.acc.2014.11.001 pmid: 25858870 |
[44] | Kantappa Halake, Seungvin Cho, Junseok Kim, et al. Applications using the metal affinity of polyphenols with mussel-inspired chemistry[J]. Macromolecular Research, 2018, 26: 93-99. |
[45] | Yan Guihua, Chen Gaofeng, Peng Zhiqing, et al. The cross-linking mechanism and applications of catechol-metal polymer materials[J]. Advanced Materials Interfaces, 2021, 8 (19) : 2100239. |
[46] | Liu Shang, Ding Ran, Yuan Jiaxin, et al. Melanin-inspired composite materials: from nanoarchitectonics to applications[J]. ACS Applied Materials & Interfaces, 2024, 16 (3) : 3001-3018. |
[47] | Zou Wenting, Liu Yan, Li Renjie, et al. Ingenious multifunctional MnO2 quantum dot nanozymes with superior catechol oxidase-like activity for highly selective sensing of redox-active dopamine based on an interfacial passivation strategy[J]. ACS Sustainable Chemistry &Engineering, 2022, 10 (30) : 10057-10067. |
[48] |
Svechkarev Denis, Kyrychenko Alexander, Payne William M, et al. Probing the self-assembly dynamics and internal structure of amphiphilic hyaluronic acid conjugates by fluorescence spectroscopy and molecular dynamics simulations[J]. Soft Matter, 2018, 14 (23) : 4762-4771.
doi: 10.1039/c8sm00908b pmid: 29799600 |
[49] | Huang Jie, Chen Yeqing, Rao Pengpeng, et al. Enhancing the electron transport, quantum yield, and catalytic performance of carbonized polymer dots via Mn-O bridges[J]. Small, 2022, 18 (13) : 2106863. |
[50] | Yi C, Yang Y, Jiang J, et al. Research and application of particle emulsifiers[J]. Progress in Chemistry, 2011, 23 (1) : 65. |
[1] | 李凤钦, 耿涛, 周婧洁, 孙晋源, 张科, 王春雨. 对不同催化剂催化十二醇和1, 2-环氧丁烷反应的机理和性能研究[J]. 日用化学工业(中英文), 2025, 55(8): 998-1005. |
[2] | 赵淋淋, 焦宇恬, 赵莉, 王策, 徐宝财. 一种含偶氮苯的二肽表面活性剂的合成及自组装行为[J]. 日用化学工业(中英文), 2024, 54(5): 507-513. |
[3] | 窦欣. 凝胶软物质体系的超分子结构多样性分析[J]. 日用化学工业, 2022, 52(9): 945-950. |
[4] | 胡晨毓,曲文杰,郭学平,徐桂欣,邹松岩,王靖. 透明质酸钠的多重护发功效研究[J]. 日用化学工业, 2022, 52(4): 370-375. |
[5] | 李俊,张兴芳,张成伟,徐娜. CTAC/NaSal表面活性剂棒状胶束自组装行为的介观布朗动力学模拟[J]. 日用化学工业, 2020, 50(4): 213-219. |
[6] | 孙娜,郑利强,孙继超. 弱相互作用调控表面活性剂自组装(IV)——在离子传导方面的应用[J]. 日用化学工业, 2019, 49(4): 214-219. |
[7] | 于洋,郑利强,孙继超. 弱相互作用调控表面活性剂自组装(Ⅲ)——响应性表面活性剂[J]. 日用化学工业, 2019, 49(3): 141-149. |
[8] | 孙冠男,郑利强,孙继超. 弱相互作用调控表面活性剂自组装(II)——表面活性剂的结构与设计[J]. 日用化学工业, 2019, 49(2): 70-75. |
[9] | 戴璐逊,梁少彬,陈耀,谢襄漓,李存军,王林江. 层状双氢氧化物和蒙脱石的剥离及其自组装[J]. 日用化学工业, 2018, 48(7): 392-398. |
[10] | 陈雨嘉, 刘嘉希, 朱倩倩, 胡松青, 孙霜青, 王秀民. 水杨酸钠对DTAB/PAM复合体系自组装行为的影响[J]. 日用化学工业, 2018, 48(6): 308-313. |
[11] | 任姝静, 郑利强, 孙继超. 弱相互作用调控表面活性剂自组装(Ⅰ)——弱相互作用的分类[J]. 日用化学工业, 2018, 48(11): 611-616. |
[12] | 郝姗姗, 翟巧雅, 赵莉, 徐宝财. 一个基于主客体作用的超两亲分子自组装体系的构筑及其光调控[J]. 日用化学工业, 2017, 47(1): 1-6. |
[13] | 张旭东, 葛青, 李庆霞, 杨敏, 韩传红, 魏西莲. 一种含羟丙基的阳离子表面活性剂的流变性能[J]. 日用化学工业, 2015, 45(1): 1-6. |
[14] | 康林霞, 张剑, 秦洁, 张晟. 碱性蛋白酶在液体洗涤剂中的稳定性[J]. 日用化学工业, 2014, 44(3): 139-142. |
[15] | 刘蕊, 王香梅, 胡亚鹏. Bola型表面活性剂自组装囊泡的研究进展[J]. 日用化学工业, 2014, 44(10): 584-589. |
|