日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (1): 89-97.doi: 10.3969/j.issn.2097-2806.2025.01.011
文霞1,冯静1,刘静霞1,徐健2,陈相孩3,谢小保1,*()
收稿日期:
2024-02-22
修回日期:
2024-12-30
出版日期:
2025-01-22
发布日期:
2025-01-23
Xia Wen1,Jing Feng1,Jingxia Liu1,Jian Xu2,Xianghai Chen3,Xiaobao Xie1,*()
Received:
2024-02-22
Revised:
2024-12-30
Online:
2025-01-22
Published:
2025-01-23
Contact:
E-mail: 摘要:
皮肤微生态系统最大的特点是看似无序实则有条不紊的自我调节功能,为皮肤构筑了内生的免疫系统和外部的战略防线,表皮葡萄球菌是皮肤表面最常见的定殖菌之一,其具有极强的环境适应性和表型多样性,能长期存活于皮肤表面,同时表皮葡萄球菌在改善皮肤状态中具有重要功能如延缓皮肤衰老、保湿、抗紫外线、皮肤屏障修复等。文章介绍了表皮葡萄球菌在皮肤微生物中的角色,以及在功效护肤中的作用,并对表皮葡萄球菌在化妆品中的应用前景进行了分析展望,以期为功效护肤品的开发和应用提供有价值的参考。
中图分类号:
文霞, 冯静, 刘静霞, 徐健, 陈相孩, 谢小保. 表皮葡萄球菌应用于化妆品的研究进展[J]. 日用化学工业(中英文), 2025, 55(1): 89-97.
Xia Wen, Jing Feng, Jingxia Liu, Jian Xu, Xianghai Chen, Xiaobao Xie. Research progress of Staphylococcus epidermidis applied in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 89-97.
[1] |
Byrd A L, Belkaid Y, Segre J A. The human skin microbiome[J]. Nature Reviews Microbiology, 2018, 16 (3) : 143-155.
doi: 10.1038/nrmicro.2017.157 pmid: 29332945 |
[2] |
Parlet C P, Brown M M, Horswill A R. Commensal Staphylococci influence Staphylococcus aureus skin colonization and disease[J]. Trends in Microbiology, 2019, 27 (6) : 497-507.
doi: S0966-842X(19)30021-6 pmid: 30846311 |
[3] | Namvar A E, Bastarahang S, Abbasi N, et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review[J]. GMS Hygiene and Infection Control, 2014, 9 (3) : 1-10. |
[4] |
Mack D, Fischer W, Krokotsch A, et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis[J]. Journal of Bacteriology, 1996, 178 (1) : 175-183.
doi: 10.1128/jb.178.1.175-183.1996 pmid: 8550413 |
[5] | Vuong C, Voyich J M, Fischer E R, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system[J]. Cellular Microbiology, 2004, 6 (3) : 269-275. |
[6] | Kocianova S, Vuong C, Yao Y, et al. Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis[J]. The Journal of Clinical Investigation, 2005, 115 (3) : 688-694. |
[7] | Oppermann-Sanio F B, Steinbüchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production[J]. The Science of Nature, 2002, 89: 11-22. |
[8] | Rogers K L, Fey P D, Rupp M E. Coagulase-negative Staphylococcal infections[J]. Infectious Disease Clinics of North America, 2009, 23 (1) : 73-98. |
[9] | Byrd A L, Deming C, Cassidy S K B, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis[J]. Science Translational Medicine, 2017, 9 (397) : 1-22. |
[10] | Méric G, Mageiros L, Pensar J, et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis[J]. Nature Communications, 2018, 9 (1) : 5034. |
[11] |
Zhou W, Spoto M, Hardy R, et al. Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin[J]. Cell, 2020, 180 (3) : 454-470.
doi: S0092-8674(20)30053-2 pmid: 32004459 |
[12] |
Hussain M, Herrmann M, von Eiff C, et al. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces[J]. Infection and Immunity, 1997, 65 (2) : 519-524.
doi: 10.1128/iai.65.2.519-524.1997 pmid: 9009307 |
[13] | Otto M. Staphylococcus epidermidis: the “accidental” pathogen[J]. Nature Reviews Microbiology, 2009, 7 (8) : 555-567. |
[14] |
Foster T J. The MSCRAMM family of cell-wall-anchored surface proteins of gram-positive cocci[J]. Trends in Microbiology, 2019, 27 (11) : 927-941.
doi: S0966-842X(19)30162-3 pmid: 31375310 |
[15] | Foster T J. Surface proteins of Staphylococcus epidermidis[J]. Frontiers in Microbiology, 2020, 11: 1829. |
[16] | Severn M M, Horswill A R. Staphylococcus epidermidis and its dual lifestyle in skin health and infection[J]. Nature Reviews Microbiology, 2023, 21 (2) : 97-111. |
[17] | Shi G, Kang X, Dong F, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides[J]. Nucleic Acids Research, 2022, 50: 1-8. |
[18] |
Cogen A L, Yamasaki K, Sanchez K M, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin[J]. Journal of Investigative Dermatology, 2010, 130 (1) : 192-200.
doi: 10.1038/jid.2009.243 pmid: 19710683 |
[19] | Nakatsuji T, Chen T H, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis[J]. Science Translational Mmedicine, 2017, 9 (378) : 1-22. |
[20] | Naik S, Bouladoux N, Linehan J L, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature[J]. Nature, 2015, 520 (7545) : 104-108. |
[21] | Lai Y, Cogen A L, Radek K A, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections[J]. Journal of Investigative Dermatology, 2010, 130 (9) : 2211-2221. |
[22] | Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host & Microbe, 2020, 27 (1) : 68-78. |
[23] |
Linehan J L, Harrison O J, Han S J, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair[J]. Cell, 2018, 172 (4) : 784-796.
doi: S0092-8674(17)31513-1 pmid: 29358051 |
[24] |
Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals[J]. Science, 2012, 337 (6098) : 1115-1119.
doi: 10.1126/science.1225152 pmid: 22837383 |
[25] | Constantinides M G, Link V M, Tamoutounour S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair[J]. Science, 2019, 366 (6464) : 1-30. |
[26] | Pastar I, O’Neill K, Padula L, et al. Staphylococcus epidermidis boosts innate immune response by activation of gamma delta T cells and induction of perforin-2 in human skin[J]. Frontiers in Immunology, 2020, 11: 1-12. |
[27] |
Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury[J]. Nature Medicine, 2009, 15 (12) : 1377-1382.
doi: 10.1038/nm.2062 pmid: 19966777 |
[28] | Li D, Wang W, Wu Y, et al. Lipopeptide 78 from Staphylococcus epidermidis activates β-catenin to inhibit skin inflammation[J]. The Journal of Immunology, 2019, 202 (4) : 1219-1228. |
[29] |
Skabytska Y, Biedermann T. Staphylococcus epidermidis sets things right again[J]. Journal of Investigative Dermatology, 2016, 136 (3) : 559-560.
doi: S0022-202X(15)00084-6 pmid: 26902125 |
[30] | Negari I P, Keshari S, Huang C M. Probiotic activity of Staphylococcus epidermidis induces collagen type Ⅰ production through FFaR2/p-ERK Signaling[J]. International Journal of Molecular Sciences, 2021, 22 (3) : 1414. |
[31] | Zheng Y, Hunt R L, Villaruz A E, et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides[J]. Cell Host & Microbe, 2022, 30 (3) : 301-313. |
[32] | O’Gara J P. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections[J]. Environmental Microbiology, 2017, 19 (10) : 3823-3833. |
[33] | Nodake Y, Matsumoto S, Miura R, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe-a blinded randomized clinical trial[J]. Journal of Dermatological Science, 2015, 79 (2) : 119-126. |
[34] |
Linehan J L, Harrison O J, Han S J, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair[J]. Cell, 2018, 172 (4) : 784-796.
doi: S0092-8674(17)31513-1 pmid: 29358051 |
[35] | Harrison O J, Linehan J L, Shih H Y, et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury[J]. Science, 2019, 363 (6422) : 1-27. |
[36] | Luqman A, Muttaqin M Z, Yulaipi S, et al. Trace amines produced by skin bacteria accelerate wound healing in mice[J]. Communications Biology, 2020, 3 (1) : 277. |
[37] | Uberoi A, Bartow-McKenney C, Zheng Q, et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor[J]. Cell Host & Microbe, 2021, 29 (8) : 1235-1248. |
[38] | Cichorek M, Wachulska M, Stasiewicz A, et al. Skin melanocytes: biology and development[J]. Advances in Dermatology and Allergology, 2013, 30 (1) : 30-41. |
[39] | de Gruijl F R, van Kranen H J, Mullenders L H F. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer[J]. Journal of Photochemistry and Photobiology B: Biology, 2001, 63: 19-27. |
[40] | Wang Z, Choi J E, Wu C C, et al. Skin commensal bacteria Staphylococcus epidermidis promote survival of melanocytes bearing UVB-induced DNA damage, while bacteria Propionibacterium acnes inhibit survival of melanocytes by increasing apoptosis[J]. Photodermatology, Photoimmunology & Photomedicine, 2018, 34 (6) : 405-414. |
[41] | Nakatsuji T, Chen T H, Butcher A M, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia[J]. Science Advances, 2018, 4 (2) : 1-9. |
[42] | Keshari S, Balasubramaniam A, Myagmardoloonjin B, et al. Butyric acid from probiotic Staphylococcus epidermidis in the skin microbiome down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor[J]. International Journal of Molecular Sciences, 2019, 20 (18) : 4477. |
[43] | Nodake Y, Matsumoto S, Miura R, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe-a blinded randomized clinical trial[J]. Journal of Dermatological Science, 2015, 79 (2) : 119-126. |
[44] | Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host & Microbe, 2020, 27 (1) : 68-78. |
[45] |
Sugimoto S, Iwamoto T, Takada K, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction[J]. Journal of Bacteriology, 2013, 195 (8) : 1645-1655.
doi: 10.1128/JB.01672-12 pmid: 23316041 |
[46] |
Saxena R, Mittal P, Clavaud C, et al. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 346.
doi: 10.3389/fcimb.2018.00346 pmid: 30338244 |
[47] | Russell-Goldman E, Murphy G F. The pathobiology of skin aging: new insights into an old dilemma[J]. The American Journal of Pathology, 2020, 190: 1356-1369. |
[48] |
Heilbronner S, Krismer B, Brötz-Oesterhelt H, et al. The microbiome-shaping roles of bacteriocins[J]. Nature Reviews Microbiology, 2021, 19 (11) : 726-739.
doi: 10.1038/s41579-021-00569-w pmid: 34075213 |
[49] | Sandiford S, Upton M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci [J]. Antimicrobial Agents and Chemotherapy, 2012, 56 (3) : 1539-1547. |
[50] | Janek D, Zipperer A, Kulik A, et al. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors[J]. PLoS Pathogens, 2016, 12 (8) : 1-20. |
[51] |
Ekkelenkamp M B, Hanssen M, Hsu S T D, et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis[J]. FEBS Letters, 2005, 579 (9) : 1917-1922.
pmid: 15792796 |
[52] | Wang Y, Kuo S, Shu M, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris[J]. Applied Microbiology and Biotechnology, 2014, 98: 411-424. |
[53] | Wang Y, Kao M S, Yu J, et al. A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes[J]. International Journal of Mmolecular Sciences, 2016, 17 (11) : 1870. |
[54] | Kaneko A, Kondo S. A new cosmetic SOD delivery system using skin surface resident Staphylococcus epidermidis by lotions containing Mn/Zn ions[J]. Drug Delivery System Osaka Then Tokyo, 1997, 12: 339-346. |
[55] | Williams M R, Costa S K, Zaramela L S, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis[J]. Science Translational Medicine, 2019, 11 (490) : 1-24. |
[56] | Chin D, Goncheva M I, Flannagan R S, et al. Coagulase-negative staphylococci release a purine analog that inhibits Staphylococcus aureus virulence[J]. Nature Communications, 2021, 12 (1) : 1887. |
[57] | Dodds D, Bose J L, Deng M D, et al. Controlling the growth of the skin commensal Staphylococcus epidermidis using D-alanine auxotrophy[J]. Msphere, 2020, 5 (3) : 1-13. |
[58] |
Chen Y E, Bousbaine D, Veinbachs A, et al. Engineered skin bacteria induce antitumor T cell responses against melanoma[J]. Science, 2023, 380 (6641) : 203-210.
doi: 10.1126/science.abp9563 pmid: 37053311 |
[1] | 郑佳新, 闵春艳, 鲁辉, 陆林玲, 贾昌平. UPLC-ESI-Q-TOF/MS法测定化妆品中甲基泼尼松及其9种类似物[J]. 日用化学工业(中英文), 2025, 55(1): 110-116. |
[2] | 张秋炎, 廖均涛, 梁维维, 黄芳, 吴惠勤, 罗辉泰. UPLC-MS/MS法测定化妆品中14种噻嗪类药物[J]. 日用化学工业(中英文), 2025, 55(1): 117-124. |
[3] | 孙晓敏, 左士祥, 余瑶瑶, 吴鑫, 蔡悦, 姚超. 基于片状ZnO的功效性紫外屏蔽材料的制备及性能研究[J]. 日用化学工业(中英文), 2025, 55(1): 55-62. |
[4] | 王建, 范毓慧, 李丹凤, 程宁文, 李玲, 于玉凤. 重组人源化胶原蛋白基于体外水平的护肤功效研究[J]. 日用化学工业(中英文), 2024, 54(9): 1030-1038. |
[5] | 尤孝鹏, 彭宁, 陈智仙. 酵母菌/锌发酵产物在头皮护理中的功效研究[J]. 日用化学工业(中英文), 2024, 54(9): 1099-1105. |
[6] | 刘萍, 程磊. 氢化物发生-非色散原子荧光光谱法测定粉饼化妆品中Pb,As和Hg含量[J]. 日用化学工业(中英文), 2024, 54(9): 1140-1144. |
[7] | 江月明, 鲁文嘉, 瞿欣. 檀香木提取物对皮肤嗅觉受体的影响及功效[J]. 日用化学工业(中英文), 2024, 54(7): 828-835. |
[8] | 吴姣娇, 章为, 王彦超, 裴新荣. 3种熊果苷的安全性评价进展及其化妆品法规管理现状[J]. 日用化学工业(中英文), 2024, 54(7): 853-858. |
[9] | 史海云, 华岩. 品牌人格化IP在化妆品包装设计中的应用[J]. 日用化学工业(中英文), 2024, 54(7): 859-865. |
[10] | 王昌钊, 李子豪, 王一欣, 杨玥. UPLC-MS/MS法测定化妆品中5种美白剂[J]. 日用化学工业(中英文), 2024, 54(7): 873-878. |
[11] | 张科明, 刘雪年, 邓鸣, 鲁毅翔, 许杨彪. UPLC-Q-TOF测定化妆品中9种硝基苯类化合物[J]. 日用化学工业(中英文), 2024, 54(6): 744-750. |
[12] | 陈来成, 陈冬杰, 邹洁, 丁红, 叶宇鹏, 杨占红. 金线莲发酵液的抗氧化和美白功效研究[J]. 日用化学工业(中英文), 2024, 54(6): 656-662. |
[13] | 顾宇翔, 周羽, 刘恕. 护肤类化妆品功效评价理化试验方法的现状和分析[J]. 日用化学工业(中英文), 2024, 54(6): 727-732. |
[14] | 宋雨芯, 许琳琳, 佟瑶, 董坤, 何聪芬. 基于热糖化法体外生化抗糖化评价体系的优化与应用[J]. 日用化学工业(中英文), 2024, 54(5): 558-565. |
[15] | 宋阳, 吕永博, 任晗堃, 彭娇龙. 药用层孔菌发酵液控油及收缩毛孔机理及功效研究[J]. 日用化学工业(中英文), 2024, 54(5): 566-573. |
|