[1] |
Sun Qicheng, Huang Jin. Structure and stability of liquid foams[J]. Physics, 2006, 35 (12) : 1050-1054.
|
[2] |
Yang Zhaozhong, Zhu Jingyi, Li Xiaogang, et al. Research progress of nanoparticle-stabilized foam in oil and gas exploitation[J]. Chemical Industry and Engineering Progress, 2017, 36 (5) : 1675-1681.
|
[3] |
Saremnejad F, Mohebbi M, Koocheki A. Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce[J]. Food and Bioproducts Processing, 2020, 119 (11) : 216-225.
|
[4] |
Hill C, Eastoe J. Foams: From nature to industry[J]. Advances in Colloid and Interface Science, 2017, 247: 496-513.
doi: S0001-8686(16)30299-8
pmid: 28535903
|
[5] |
Golemanov K, Denkov N, Tcholakova S, et al. Surfactant mixtures for control of bubble surface mobility in foam studies[J]. Langmuir, 2008, 24 (18) : 9956-9961.
doi: 10.1021/la8015386
pmid: 18698860
|
[6] |
Fameau A L, Salonen A. Effect of particles and aggregated structures on the foam stability and aging[J]. Comptes Rendus Physique, 2014, 15 (8-9) : 748-760.
|
[7] |
Fameau A L, Binks B P. Aqueous and oil foams stabilized by surfactant crystals: new concepts and perspectives[J]. Langmuir, 2021, 37 (15) : 4411-4418.
|
[8] |
Rio E, Drenckhan W, Salonen A, et al. Unusually stable liquid foams[J]. Advances in Colloid and Interface Science, 2014, 205: 74-86.
doi: 10.1016/j.cis.2013.10.023
pmid: 24342735
|
[9] |
Stocco A, Rio E, Binks B P, et al. Aqueous foams stabilized solely by particles[J]. Soft Matter, 2011, 7 (4) : 1260-1267.
|
[10] |
Horozov T S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13 (3) : 134-140.
|
[11] |
Bikerman J J. Foams[M]. Springer Science & Business Media, 2013.
|
[12] |
Binks B P, Rocher A, Kirkland M. Oil foams stabilised solely by particles[J]. Soft Matter, 2011, 7 (5) : 1800-1808.
|
[13] |
Murakami R, Bismarck A. Particle-stabilized materials: dry oils and (polymerized) non-aqueous foams[J]. Advanced Functional Materials, 2010, 20 (5) : 732-737.
|
[14] |
Binks B P, Rocher A. Stabilisation of liquid-air surfaces by particles of low surface energy[J]. Physical Chemistry Chemical Physics, 2010, 12 (32) : 9169-9171.
doi: 10.1039/c0cp00777c
pmid: 20571705
|
[15] |
Roberts K, Axberg C, Österlund R, et al. Liquid crystals as lamellar reservoirs reduce thinning by drainage[J]. Nature, 1975, 255 (5503) : 53-54.
|
[16] |
Bergeron V. Forces and structure in thin liquid soap films[J]. Journal of Physics: Condensed Matter, 1999, 11 (19) : 215-238.
|
[17] |
Karakashev S I. Hydrodynamics of foams[J]. Experiments in Fluids, 2017, 58 (8) : 1-40.
|
[18] |
Xu Mengdi. Floatation two-phase foam drainage process and its kinetics[D]. Beijing: China University of Mining and Technology, 2020.
|
[19] |
Tang F Q, Xiao Z, Tang J A, et al. The effect of SiO2 particles upon stabilization of foam[J]. Journal of Colloid and Interface Science, 1989, 131 (2) : 498-502.
|
[20] |
Wang J, Nguyen A V. Foam drainage in the presence of solid particles[J]. Soft Matter, 2016, 12 (12) : 3004-3012.
doi: 10.1039/c6sm00028b
pmid: 26877265
|
[21] |
Haffner B, Khidas Y, Pitois O. The drainage of foamy granular suspensions[J]. Journal of Colloid and Interface Science, 2015, 458: 200-208.
doi: 10.1016/j.jcis.2015.07.051
pmid: 26218200
|
[22] |
Tan S N, Yang Y, Horn R G. Thinning of a vertical free-draining aqueous film incorporating colloidal particles[J]. Langmuir, 2010, 26 (1) : 63-73.
doi: 10.1021/la9021118
pmid: 19886631
|
[23] |
Carn F, Colin A, Pitois O, et al. Foam drainage in the presence of nanoparticle-surfactant mixtures[J]. Langmuir, 2009, 25 (14) : 7847-7856.
doi: 10.1021/la900414q
pmid: 19594176
|
[24] |
Shao Wenqi. Stability mechanism and seepage characteristics of nanoparticle-enhanced CO2 dry foam[D]. Beijing: China University of Petroleum, 2020.
|
[25] |
Dyab A K F, Al-Haque H N. Particle-stabilised non-aqueous systems[J]. Royal Society of Chemistry Advances, 2013, 3 (32) : 13101-13105.
|
[26] |
Babamahmoudi S, Riahi S. Application of nano particle for enhancement of foam stability in the presence of crude oil: Experimental investigation[J]. Journal of Molecular Liquids, 2018, 264 (2) : 499-509.
|
[27] |
Binks B P, Tyowua A T. Influence of the degree of fluorination on the behaviour of silica particles at air-oil surfaces[J]. Soft Matter, 2013, 9 (3) : 834-845.
|
[28] |
Murakami R, Kobayashi S, Okazaki M, et al. Effects of contact angle and flocculation of particles of oligomer of tetrafluoroethylene on oil foaming[J]. Frontiers in Chemistry, 2018, 435 (6) : 1-8.
|
[29] |
Horozov T S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13 (3) : 134-140.
|
[30] |
Fernandez-Rodriguez M A, Binks B P, Rodriguez-Valverde M A, et al. Particles adsorbed at various non-aqueous liquid-liquid interfaces[J]. Advances in Colloid and Interface Science, 2017, 247 (9) : 208-222.
|
[31] |
Liu Guangqi. Chemical physical property data manual (organic volume)[M]. Beijing: Chemical Industry Press, 2022.
|
[32] |
Watanabe R, Yokoi T, Kobayashi E, et al. Extension of size of monodisperse silica nanospheres and their well-ordered assembly[J]. Journal of Colloid and Interface Science, 2011, 360 (1) : 1-7.
doi: 10.1016/j.jcis.2010.09.001
pmid: 21570081
|
[33] |
Huerre A, De Corato M, Garbin V. Dynamic capillary assembly of colloids at interfaces with 10 000 g accelerations[J]. Nature Communications, 2018, 9 (1) : 3620.
|
[34] |
Hadler K, Cilliers J J. The effect of particles on surface tension and flotation froth stability[J]. Mining, Metallurgy & Exploration, 2019, 36 (1) : 63-69.
|