[1] |
Rabbani N, Al-Motawa M, Thornalley P J. Protein glycation in plants: An under-researched field with much still to discover[J]. International Journal of Molecular Sciences, 2020, 21 (11):39-42.
doi: 10.3390/ijms21010039
|
[2] |
GkogkolouP, Böhm M. Advanced glycation end products: Key players in skin aging[J]. Dermato Endocrinology, 2012, 4 (3):259-270.
doi: 10.4161/derm.22028
|
[3] |
Kueper T, Grune T, Prahl S, et al. Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging[J]. Journal of Biological Chemistry, 2007, 282 (32):23427.
doi: 10.1074/jbc.M701586200
pmid: 17567584
|
[4] |
Thornalley P J, Langborg A, Minhas H S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose[J]. Biochem J, 1999, 344: 109-116.
doi: 10.1042/bj3440109
|
[5] |
Ros J. Protein carbonylation:principles,analysis,and biological implications[M]. 1st Edition. Hoboken, NJ: John Wiley & Sons, Inc., 2017: 27-48.
|
[6] |
Iwai I, Ikuta K, Murayama K, et al. Change in optical properties of stratum corneum induced by protein carbonylation in vitro[J]. Journal of Cosmetic Science, 2008, 30: 41-46.
|
[7] |
LeeE J, Kim J Y, Oh S H. Advanced glycation end products (AGEs) promotemelanogenesis through receptor for AGEs[J]. Scientific Reports, 2016, 6: 27848.
doi: 10.1038/srep27848
|
[8] |
Ghodsi R, Kheirouri S. Carnosine and advanced glycation end products: a systematic review[J]. Amino Acids, 2018, 50: 1177-1186.
doi: 10.1007/s00726-018-2592-9
pmid: 29858687
|
[9] |
Bartáková V, Pleskačová A, Kuricová Katarína, et al. Dysfunctional protection against advanced glycation due to thiamine metabolism abnormalities in gestational diabetes[J]. Glycoconjugate Journal, 2016, 33 (4):1-8.
doi: 10.1007/s10719-015-9642-2
|
[10] |
Khmaladze I, Österlund C, Smiljanic S, et al. A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes[J]. Journal of Cosmetic Dermatology, 2020, 19: 1415-1425.
doi: 10.1111/jocd.13176
pmid: 31584241
|
[11] |
Bissett D L, Oblong J E, Berge C A. Niacinamide: A B vitamin that improves aging facial skin appearance[J]. Dermatologic Surgery, 2010, 31: 860-866.
doi: 10.1111/j.1524-4725.2005.31732
|
[12] |
Nenna A, Spadaccio C, Lusini M, et al. Basic and clinical research against advanced glycation end products(AGEs): new compounds to tackle cardiovascular disease and diabetic complications[J]. Recent Advance Cardiovasc Drug Discover, 2015, 10: 10-33.
|
[13] |
Metz T O, Alderson N L, Thorpe S R, et al. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications[J]. Archives of Biochemistry and Biophysics, 2003, 419: 41-49.
doi: 10.1016/j.abb.2003.08.021
pmid: 14568007
|
[14] |
Ghelani H, Razmovski N V, Pragada R R, et al. Attenuation of glucose-induced myoglobin glycation and the formation of advanced glycation end products (AGEs) by (R)-α-lipoic acid in vitro[J]. Biomolecules, 2018, 8 (1):9.
doi: 10.3390/biom8010009
|
[15] |
Danby F W. Nutrition and aging skin: sugar and glycation[J]. Clinics in Dermatology, 2010, 28 (4):409-411.
doi: 10.1016/j.clindermatol.2010.03.018
|
[16] |
Babu P V A, Sabitha K E, Shyamaladevi C S. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats[J]. Food and Chemical Toxicology, 2008, 46: 280-285.
pmid: 17884275
|
[17] |
Dearlove R P, Greenspan P, Hartle D K, et al. Inhibition of protein glycation by extracts of culinary herbs and spices[J]. Journal of Medicinal Food, 2008, 11: 275-281.
doi: 10.1089/jmf.2007.536
pmid: 18598169
|
[18] |
Frei B, Higdon J V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies[J]. Journal of Nutrition, 2003, 133 (10):3275.
pmid: 14519826
|
[19] |
Aldini G, Vistoli G, Stefek M, et al. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products[J]. Free Radical Research, 2013, 47 (1):93-137.
doi: 10.3109/10715762.2013.792926
|
[20] |
Jung Min Han, Sang Gyu Park, Yeonsook Lee, et al. Structural separation of different extracellular activities in aminoacyl-tRNA synthetase-interacting multi-functional protein, p43/AIMP1[J]. Biochemical and Biophysical Research Communications, 2006, 342: 113-118.
doi: 10.1016/j.bbrc.2006.01.117
pmid: 16472771
|
[21] |
Jina Kim, Sujin Kang, Han Jin Kwon, et al. Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging[J]. Cosmet Dermatol, 2019, 18: 251-257.
|
[22] |
Jeong-Jun Lee, Young-Min Han, Tae-Wan Kwon, et al. Functional fragments of AIMP1-derived peptide (AdP) and optimized hydrosol for their topical deposition by Box-Behnken design[J]. Molecules, 2019, 24 (10):1967.
doi: 10.3390/molecules24101967
|
[23] |
Beom Jun Lee, Jae Hak Park, Yong Soon Lee, et al. Effect of carnosine and related compounds on glucose oxidation and protein glycation in vitro[J]. Biochem Mole Biology, 1999, 32 (4):370-378.
|
[24] |
Hipkiss A R, Worthington V C, Himsworth T J, et al. Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite[J]. Biochimica et Biophysica Acta, 1998 (1380):46-54.
|
[25] |
Yang Lijie, Hu Weiyi, Ma Yafeng. Establishment of reference model of positive control substance for SLS human single patch test[J]. Chin J Lepr Skin Dis, 2017, 33 (2):88-91.
|
[26] |
Crisan M, Taulescu M, Crisan D, et al. Expression of advanced glycation end-products on sun-exposed and non-exposed cutaneous sites during the ageing process in humans[J]. Plos One, 2013, 8 (10):75003.
doi: 10.1371/journal.pone.0075003
pmid: 24116020
|
[27] |
Lin Jie, He Congfen, Dong Yinmao. Transdermal absorption mechanism of functional components in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2009, 39 (4):275-278.
|