日用化学工业(中英文) ›› 2024, Vol. 54 ›› Issue (6): 698-707.doi: 10.3969/j.issn.2097-2806.2024.06.011
方旭东1,燕永利1,*(),刘江波2,3,严阿勇4,贺炳成4
收稿日期:
2023-11-01
修回日期:
2024-05-29
出版日期:
2024-06-22
发布日期:
2024-06-24
基金资助:
Xudong Fang1,Yongli Yan1,*(),Jiangbo Liu2,3,Ayong Yan4,Bingcheng He4
Received:
2023-11-01
Revised:
2024-05-29
Online:
2024-06-22
Published:
2024-06-24
Contact:
* E-mail: 摘要:
油水混相泡沫是一种特殊的泡沫体系,由于其在化工、食品、药品等领域的广泛应用,因此对其稳定化机制的研究变得越来越重要。基于最新研究进展,研究了影响油水混相泡沫稳定性的因素,包括表面活性物质、油相以及一些其他因素,以探究其对泡沫的发泡性能和稳定性的作用机制,并着重论述了油相的种类、含量对泡沫稳定化的影响,最后探究了温度、矿化度以及不同表面活性剂和颗粒或者油相的耦合对泡沫稳定性的影响。文章还提出了一些未来的研究方向以及利用新型材料和纳米颗粒技术开发更有效的泡沫稳定化方法,对于深入理解油水混相泡沫的稳定化机制、优化泡沫性能、开发新的应用和解决相关领域的问题具有重要意义。
中图分类号:
方旭东, 燕永利, 刘江波, 严阿勇, 贺炳成. 油水混相泡沫的稳定化研究进展[J]. 日用化学工业(中英文), 2024, 54(6): 698-707.
Xudong Fang, Yongli Yan, Jiangbo Liu, Ayong Yan, Bingcheng He. Research progress on the stabilization of oil-water miscible foams[J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 698-707.
[1] | Lai N, Zhao J, Zhu Y, et al. Influence of different oil types on the stability and oil displacement performance of gel foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127674. |
[2] | Pu W, Wei P, Sun L, et al. Investigation on stabilization of foam in the presence of crude oil for improved oil recovery[J]. Journal of Dispersion Science and Technology, 2019, 40 (5) : 646-656. |
[3] | Aveyard R, Binks B, Fletcher P, et al. Aspects of aqueous foam stability in the presence of hydrocarbon oils and solid particles[J]. Advances in Colloid and Interface Science, 1994, 48: 93-120. |
[4] | Zhan F, Zhou X, Jiang Y, et al. From an oil with “antifoaming” properties to stabilization for foam: A novel approach for establishing a long-term stable foam system[J]. Food Hydrocolloids, 2023, 145: 109086. |
[5] | Rad M J, Alizadeh O, Takassi M A, et al. Green surfactant in oil recovery: Synthesis of a biocompatible surfactant and feasibility study of its application in foam-based enhanced oil recovery[J]. Fuel, 2023, 341: 127646. |
[6] | Tang X C, Li Y Q, Liu Z Y, et al. Nanoparticle-reinforced foam system for enhanced oil recovery (EOR): Mechanistic review and perspective[J]. Petroleum Science, 2023, 20 (4) : 2282-2304. |
[7] | Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44 (24) : 3722-3725. |
[8] | Afifi H R, Mohammadi S, Mirzaei Derazi A, et al. Enhancement of smart water-based foam characteristics by SiO2 nanoparticles for EOR applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127143. |
[9] | Yekeen N, Manan M A, Idris A K, et al. A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 164: 43-74. |
[10] | Novosad J J, Mannhardt K. The interaction between foam and crude oils[C]// PETSOC Annual Technical Meeting. PETSOC, 1989: PETSOC-89-40-29. |
[11] | Jensen J A, Friedmann F. Physical and chemical effects of an oil phase on the propagation of foam in porous media[C]// SPE Western Regional Meeting. SPE, 1987: SPE-16375-MS. |
[12] | Rashed Rohani M, Ghotbi C, Badakhshan A. Foam stability and foam-oil interactions[J]. Petroleum Science and Technology, 2014, 32 (15) : 1843-1850. |
[13] | Fameau A L, Saint-Jalmes A. Non-aqueous foams: Current understanding on the formation and stability mechanisms[J]. Advances in Colloid and Interface Science, 2017, 247: 454-464. |
[14] | Binks B P, Rocher A, Kirkland M. Oil foams stabilised solely by particles[J]. Soft Matter, 2011, 7 (5) : 1800-1808. |
[15] | Binks B P, Vishal B. Particle-stabilized oil foams[J]. Advances in Colloid and Interface Science, 2021, 291: 102404. |
[16] | Zhang Y, Wu J, Wang H, et al. Stabilization of liquid foams through the synergistic action of particles and an immiscible liquid[J]. Angewandte Chemie International Edition, 2014, 53 (49) : 13385-13389. |
[17] | Koczo K, Leatherman M D, Hughes K, et al. Foaming chemistry and physics[M]//Leslie R Rudnick. Lubricant Additives. Florida: CRC Press, 2017: 337-384. |
[18] | Tran T, Perdomo M E G, Haghighi M, et al. Effects of cationic and anionic surfactants on the stability, rheology and proppant suspension of nanoparticle-stabilized fracturing foams at elevated temperature[J]. Geoenergy Science and Engineering, 2023: 212041. |
[19] | Sheng Y, Li Y, Ma L, et al. Thermal stability of highly stable foams stabilized by nanoparticles and surfactants[J]. Thermal Science and Engineering Progress, 2023: 101980. |
[20] | Pu W, Pang S, Wang C. Experimental investigation of foam performance in the presence of crude oil[J]. Journal of Surfactants and Detergents, 2017, 20: 1051-1059. |
[21] | Fameau A L. Non-aqueous foams based on edible oils[M]//Patel A R. Edible oil structuring: concepts, methods and applications. London: The Royal Society of Chemistry, 2017. |
[22] | Farzaneh S A, Sohrabi M. Experimental investigation of CO2-foam stability improvement by alkaline in the presence of crude oil[J]. Chemical Engineering Research and Design, 2015, 94: 375-389. |
[23] | Boonyasuwat S, Chavadej S, Malakul P, et al. Surfactant recovery from water using a multistage foam fractionator: Part Ⅰ effects of air flow rate, foam height, feed flow rate and number of stages[J]. Separation Science and Technology, 2005, 40 (9) : 1835-1853. |
[24] | Wu W, Pan J. Study on the foamability and its influencing factors of foaming agents in foam-combined flooding[C]// 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010: 1-5. |
[25] | Huang D D, Nikolov A, Wasan D T. Foams: Basic properties with application to porous media[J]. Langmuir, 1986, 2 (5) : 672-677. |
[26] | Lin F, Ng J K, Huang Y, et al. Formation and stability of oil‐laden foam: Effect of surfactant and hydrocarbon solvent[J]. The Canadian Journal of Chemical Engineering, 2021, 99 (12) : 2658-2669. |
[27] | Bergeron V, Cj R. Disjoining pressure and stratification in asymmetric thin-liquid films[J]. Colloid and Polymer Science, 1995 (2) : 273. |
[28] | Simjoo M, Rezaei T, Andrianov A, et al. Foam stability in the presence of oil: effect of surfactant concentration and oil type[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438: 148-158. |
[29] |
Shrestha L K, Aramaki K, Kato H, et al. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems[J]. Langmuir, 2006, 22 (20) : 8337-8345.
pmid: 16981746 |
[30] | Shrestha R G, Shrestha L K, Solans C, et al. Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353 (2/3) : 157-165. |
[31] | Blázquez C, Emond E, Schneider S, et al. Non-aqueous and crude oil foams[J]. Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles, 2014, 69 (3) : 467-479. |
[32] | Blázquez C, Dalmazzone C, Emond E, et al. Crude oil foams. Part 1-A novel methodology for studying non-aqueous foams formed by depressurization[J]. Fuel, 2016, 171: 224-237. |
[33] | Rodríguez-Hakim M, Anand S, Tajuelo J, et al. Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity[J]. Journal of Rheology, 2020, 64 (4) : 799-816. |
[34] | Lee J, Nikolov A, Wasan D. Stability of aqueous foams in the presence of oil: on the importance of dispersed vs solubilized oil[J]. Industrial & Engineering Chemistry Research, 2013, 52 (1) : 66-72. |
[35] |
Elsing J, Stefanov T, Gilchrist M, et al. Monodisperse polystyrene foams via polymerization of foamed emulsions: structure and mechanical properties[J]. Physical Chemistry Chemical Physics, 2017, 19 (7) : 5477-5485.
doi: 10.1039/c6cp06612g pmid: 28165070 |
[36] | Bergeron V, Fagan M, Radke C. Generalized entering coefficients: a criterion for foam stability against oil in porous media[J]. Langmuir, 1993, 9 (7) : 1704-1713. |
[37] | Yuan Fuqing, Wang Qiwei, Li Zongyang, et al. Relationship between oil and foam stability[J]. Petroleum Geology and Recovery Efficiency, 2015, 22 (1) : 118-121. |
[38] | Jin F Y, Wang S, Pu W F, et al. Emulsified oil foam for improving the flowability of heavy oil in wellbore under high salinity environments[J]. Journal of Industrial and Engineering Chemistry, 2016, 39: 153-161. |
[39] | Li Gen, Wang Keliang, Sun Shujie, et al. Influence of kerosene on foams properties of fluorinated sulfobetaine[J]. Applied Chemical Industry, 2016, 45 (12) : 2225-2228. |
[40] | Pu W, Pang S, Wang C. Experimental investigation of foam performance in the presence of crude oil[J]. Journal of Surfactants and Detergents, 2017, 20 (5) : 1051-1059. |
[41] | Pang Shishi, Pu Wanfen, Li Yueyang, et al. Study on factors affecting the stability of foam-crude oil interaction[J]. Oilfield Chemistry, 2015, 32 (3) : 355-359. |
[42] | Liu Xiaoqin, Zhai Cheng, Zheng Yangfeng, et al. Nanoparticles and Gemini surfactants cooperate to stabilize CO2 foam fracturing fluid[J]. Journal of China University of Mining & Technology, 2023, 52 (5) : 963-975. |
[43] | Patel A R, Drost E, Blijdenstein T B J, et al. Stable and temperature-responsive surfactant-free foamulsions with high oil-volume fraction[J]. Chemphyschem, 2012, 13 (17) : 3741. |
[44] | Wu X, Zhai C, Zheng Y, et al. Effect of different salt ions with different concentrations on the stability of carbon dioxide-in-water foam fracturing fluids[J]. Journal of Molecular Liquids, 2023, 373: 121215. |
[45] | Sun Q, Li Z, Li S, et al. Utilization of surfactant-stabilized foam for enhanced oil recovery by adding nanoparticles[J]. Energy & Fuels, 2014, 28 (4) : 2384-2394. |
[46] | Li S, Li Z, Wang P. Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles[J]. Industrial & Engineering Chemistry Research, 2016, 55 (5) : 1243-1253. |
[47] |
Zhang C, Li Z, Sun Q, et al. CO2 foam properties and the stabilizing mechanism of sodium bis (2-ethylhexyl) sulfosuccinate and hydrophobic nanoparticle mixtures[J]. Soft Matter, 2016, 12 (3) : 946-956.
doi: 10.1039/c5sm01408e pmid: 26563818 |
[48] | Singh R, Mohanty K K. Foam flow in a layered, heterogeneous porous medium: A visualization study[J]. Fuel, 2017, 197: 58-69. |
[49] | Li S, Qiao C, Li Z, et al. Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide[J]. Energy & Fuels, 2017, 31 (2) : 1478-1488. |
[50] |
Cui Z G, Cui Y Z, Cui C F, et al. Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant[J]. Langmuir, 2010, 26 (15) : 12567-12574.
doi: 10.1021/la1016559 pmid: 20608686 |
[51] |
Maestro A, Rio E, Drenckhan W, et al. Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening[J]. Soft Matter, 2014, 10 (36) : 6975-6983.
doi: 10.1039/c4sm00047a pmid: 24832218 |
[52] | Rahman A, Torabi F, Shirif E. Surfactant and nanoparticle synergy: towards improved foam stability[J]. Petroleum, 2023, 9 (2) : 255-264. |
[53] | Santini E, Krägel J, Ravera F, et al. Study of the monolayer structure and wettability properties of silica nanoparticles and CTAB using the Langmuir trough technique[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382 (1-3) : 186-191. |
[54] | Paul D. Entry and spreading of alkane drops at the air/surfactant solution interface in relation to foam and soap film stability[J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89 (24) : 4313-4321. |
[55] | Mannhardt K, Novosad J J, Schramm L L. Foam/oil interations at reservoir conditions[C]// SPE Improved Oil Recovery Conference. SPE, 1998: SPE-39681-MS. |
[56] | Nikolov A D, Wasan D T, Huang D W, et al. The effect of oil on foam stability: mechanisms and implications for oil displacement by foam in porous media[C]// SPE Annual Technical Conference and Exhibition. SPE, 1986: SPE-15443-MS. |
[1] | 白凡, 燕永利, 刘江波, 严阿勇, 贺炳成. 油相对水相泡沫形成和稳定性的影响[J]. 日用化学工业(中英文), 2024, 54(6): 630-639. |
[2] | 汤艳娜, 陈子珍. BaTiO3-TiO2复合光催化剂降解盐酸四环素及机理研究[J]. 日用化学工业(中英文), 2024, 54(2): 175-180. |
[3] | 刘佩, 潘婷, 裴晓梅, 宋冰蕾, 蒋建中, 崔正刚, Bernard P. Binks. 非离子-阴离子Bola型表面活性剂和纳米SiO2颗粒协同稳定的双重响应型O/W乳状液[J]. 日用化学工业(中英文), 2024, 54(1): 1-15. |
[4] | 潘婷, 吴俊辉, 裴晓梅, 崔正刚. 新型拟双子表面活性剂构筑的蠕虫状胶束及其pH和温度响应行为[J]. 日用化学工业(中英文), 2023, 53(12): 1361-1368. |
[5] | 孟明珠,张真真,梁帅童,张红娟,王际平. 棉织物洗涤中染料转移抑制的影响因素研究[J]. 日用化学工业, 2022, 52(6): 613-619. |
[6] | 郭华,徐进,何云平,许虎君. 椰油酰水解燕麦蛋白钾对氨基酸洁面膏的性能影响[J]. 日用化学工业(中英文), 2022, 52(12): 1307-1313. |
[7] | 丁涵雪,李雪婷,鲁希华. 双重响应性纳米凝胶的制备及其结构色调控[J]. 日用化学工业, 2021, 51(9): 852-858. |
[8] | 陈思佳,易亚,张大伟. 丙三醇对壳聚糖溶液储存稳定性的影响[J]. 日用化学工业, 2021, 51(4): 306-311. |
[9] | 张冉冉,杜玉兰,范培浩,张云贤. 油包水乳化体系稳定性的研究与分析[J]. 日用化学工业, 2020, 50(8): 566-571. |
[10] | 康万利,范宇恒,杨红斌,Bauyrzhan Sarsenbekuly. 两亲聚合物设计合成及其增效体系研究(Ⅹ)—— 油藏适应性[J]. 日用化学工业, 2020, 50(10): 660-668. |
[11] | 张婉晴,蒋建中,崔正刚. 表面活性剂-纳米颗粒相互作用与智能体系的构建(IV)非离子表面活性剂-纳米颗粒相互作用——氢键作用构建温度-响应性Pickering乳状液[J]. 日用化学工业, 2019, 49(10): 633-642. |
[12] | 胡学一,谭杰,方云,李俊国,孙洋,李华山. 烷醇酰胺类非离子表面活性剂增稠/稳泡性的比较研究[J]. 日用化学工业, 2018, 48(9): 500-504. |
[13] | 张金昌,李铁纯. 醋酸丁酯固定床催化合成乙二醇丁醚醋酸酯[J]. 日用化学工业, 2018, 48(7): 388-391. |
[14] | 汤小芹, 陈明华, 李芳芳, 任天辉. 椰油酰基甘氨酸钾部分酸化对洁面膏性能的影响[J]. 日用化学工业, 2017, 47(7): 403-407. |
[15] | 王毅楠,刘文举,郭亚军,卫宏远. 基于单轴测试法的浓缩洗衣粉结块动力学研究[J]. 日用化学工业, 2016, 46(3): 151-154. |
|