日用化学工业(中英文) ›› 2026, Vol. 56 ›› Issue (1): 8-16.doi: 10.3969/j.issn.2097-2806.2026.01.002
收稿日期:2026-01-21
出版日期:2026-01-22
发布日期:2026-02-05
基金资助:Received:2026-01-21
Online:2026-01-22
Published:2026-02-05
Contact:
E-mail: 摘要:
表面活性剂的宏观性能、应用功能与其微观胶束结构密切相关。本文系统梳理了胶束概念的百年演进:从19世纪中叶的萌芽、20世纪初的理论奠基,到中后期借助先进表征技术实现的结构解析与形貌拓展,进而深入探讨了蠕虫状胶束的发现历程。该类胶束具有独特的柔性链状结构与动态黏弹行为,被誉为“活聚合物”,其理论建立与性能调控推动了黏弹性表面活性剂在油田、医药、材料等领域的创新应用。文章旨在通过历史回顾与前沿分析,为功能表面活性剂的未来发展提供借鉴。
中图分类号:
冯玉军. 黏弹性表面活性剂 (Ⅰ)——百年胶束发展史及蠕虫状胶束的发现[J]. 日用化学工业(中英文), 2026, 56(1): 8-16.
Yujun Feng. Viscoelastic surfactants (I)Evolution of micelles and discovery of wormlike micelles[J]. China Surfactant Detergent & Cosmetics, 2026, 56(1): 8-16.
| [1] | 苏更林. “工业味精”—表面活性剂[J]. 化工之友, 2001(1): 31. |
| [2] | Tadros T F. Applied surfactants: Principles and applications[M]. Wiley: Weinheim, 2005. |
| [3] | 杨锦宗, 张淑芬. 表面活性剂与高新技术产业[J]. 精细化工, 2002, 19(增刊): 1-5. |
| [4] |
Virdi J K, Dusunge A, Handa S. Aqueous micelles as solvent, ligand, and reaction promoter in catalysis[J]. JACS Au, 2024, 4(2): 301-317.
doi: 10.1021/jacsau.3c00605 pmid: 38425936 |
| [5] | McBain J W. General discussion on colloids and their viscosity[J]. Trans. Faraday Soc., 1913, 9: 99-101. |
| [6] | McBain J W. In: Advances in colloid science[M]. Kramer E O, Ed. Interscience Publishers, New York, 1942. |
| [7] | McBain J W. Colloid science[M]. Heath and Company, San Francisco, 1950. |
| [8] |
Hess K, Gundermann J. Roentgen graphical tests on inactive and pouring colloid solutions (Evidence of the orientation from colloid parts in the flow through capillaries through the occurrence of fiber diagrams, hydration of colloid parts in the solution)[J]. Ber. Dtsch. Chem. Ges., 1937, 70: 1800-1808.
doi: 10.1002/cber.v70:8 |
| [9] |
Hess K, Phllippoff W, Kiessig H. Soap solutions[J]. Kolloid Z., 1939, 88: 40-51.
doi: 10.1007/BF01518887 |
| [10] |
Harkins W D, Davies E C H, Clark G L. The orientation of molecules in the surfaces of liquids, the energy relations at surfaces, solubility, adsorption, emulsification, molecular association, and the effect of acids and bases on interfacial tension (Surface energy VI)[J]. J. Am. Chem. Soc., 1917, 39: 541-596.
doi: 10.1021/ja02249a002 |
| [11] |
Harkins W D, Mattoon R W, Corrin M L. Structure of soap micelles indicated by X-rays and the theory of molecular orientation. I. Aqueous solutions[J]. J. Am. Chem. Soc., 1946, 68: 220-228.
doi: 10.1021/ja01206a022 |
| [12] |
Mattoon R W, Stearns R S, Harkins W D. Structure for soap micelles as indicated by a previously unrecognized X-ray diffraction band[J]. J. Chem. Phys., 1947, 15: 209-210.
doi: 10.1063/1.1746475 |
| [13] |
Harkins W D. A cylindrical model for the smallsoap micelle[J]. J. Chem. Phys., 1948, 16: 156-157.
doi: 10.1063/1.1746811 |
| [14] | Hartley G S. Aqueous solutions of paraffinic-chain salts. A study of micelle formation[M]. Herman, Paris, 1936. |
| [15] |
Menger F M, Zana R, Lindman B. Portraying the structure of micelles[J]. J. Chem. Ed., 1998, 75(1): 115.
doi: 10.1021/ed075p115 |
| [16] |
van Stam J, Depaemelaere S, de Schryver F C. Micellar aggregation numbers-a fluorescence study[J]. J. Chem. Ed., 1998, 75(1): 93-98.
doi: 10.1021/ed075p93 |
| [17] |
Debye P. Note on light scattering in soap solutions[J]. J. Colloid Sci., 1948, 3: 407-409.
pmid: 18877004 |
| [18] |
Debye P. Light scattering in soap solutions[J]. J. Phys. Colloid Chem., 1949, 53: 1-8.
pmid: 18112142 |
| [19] |
Debye P. Light scattering in soap solutions[J]. Ann. NY Acad. Sci., 1949, 51: 575-592.
doi: 10.1111/nyas.1949.51.issue-4 |
| [20] |
Poland D C, Scheraga H A. Hydrophobic bonding and micelle stability[J]. J. Phys. Chem., 1965, 69: 2431-2442.
doi: 10.1021/j100891a055 |
| [21] |
Poland D C, Scheraga H A. Hydrophobic bonding and micelle stability: The influence of ionic head groups[J]. J. Colloid Interface Sci., 1966, 21: 273-283.
doi: 10.1016/0095-8522(66)90012-2 |
| [22] | Tanford C. The hydrophobic effect[M]. Wiley, New York, 1973. |
| [23] |
Tanford C. Thermodynamics of micelle formation: Prediction of micelle size and size distribution[J]. Proc. Natl. Acad. Sci. USA, 1974, 71: 1811-1815.
pmid: 4525294 |
| [24] |
Tanford C. Theory of micelle formation in aqueous solutions[J]. J. Phys. Chem., 1974, 78: 2469-2479.
doi: 10.1021/j100617a012 |
| [25] |
Tartar H V. A theory of the structure of the micelles of normal paraffin chain salts in aqueous solution[J]. J. Phys. Chem., 1955, 59: 1195-1199.
doi: 10.1021/j150534a004 |
| [26] |
Israelachvili J N, Mitchell J D, Ninham B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers[J]. J. Chem. Soc. Faraday Trans. II, 1976, 72: 1525-1568.
doi: 10.1039/f29767201525 |
| [27] |
Czajka A, Hazell G, Eastoe J. Surfactants at the design limit[J]. Langmuir, 2015, 31: 8205-8217.
doi: 10.1021/acs.langmuir.5b00336 pmid: 25797065 |
| [28] |
Zhang Y, Feng Y, Wang Y, et al. CO2‑switchable viscoelastic fluids based on a pseudogemini surfactant[J]. Langmuir, 2013, 29: 4187-4192.
doi: 10.1021/la400051a |
| [29] |
Nagarajan R, Ruckenstein E. Theory of surfactant self-assembly: A predictive molecular thermodynamic approach[J]. Langmuir, 1991, 7: 2934-2969.
doi: 10.1021/la00060a012 |
| [30] | Nagarajan R. One hundred years of micelles:Evolution of the theory of micellization. In: RomstedS,ed. Surfactant Science and Technology[M]. CRC Press, Taylor & Francis, 2014: 3-52. |
| [31] |
Stigter D. Intrinsic viscosity and flexibility of rodlike detergent micelles[J]. J. Phys. Chem. 1966, 70(4): 1323-1325.
doi: 10.1021/j100876a507 |
| [32] |
Rupar P A, Chabanne L, Winnik M A, et al. Non-centrosymmetric cylindrical micelles by unidirectional growth[J]. Science, 2012, 337(6094): 559-562.
doi: 10.1126/science.1221206 pmid: 22859484 |
| [33] |
Shikata T, Shiokawa M, Imai S I. Viscoelastic behavior of surfactant threadlike micellar solutions: effects of additives[J]. J. Colloid Interface Sci., 2003, 259(2): 367-373.
doi: 10.1016/S0021-9797(02)00232-1 |
| [34] | Zana R, Kaler E W. Giant micelles: Properties and applications[M]. CRC Press, Boca Raton, 2007. |
| [35] |
Cates M E, Fielding S M. Rheology of giant micelles[J]. Adv. Phys., 2006, 55(7-8): 799-879.
doi: 10.1080/00018730601082029 |
| [36] |
Philippoff W. Colloidal and polyelectrolytes. The micelle and swollen micelle. On soap micelles[J]. Discuss. Faraday Soc., 1951, 11: 96-107.
doi: 10.1039/df9511100096 |
| [37] |
Debye P, Anacker E W. Micelle shape from dissymmetry measurements[J]. J. Phys. Colloid Chem., 1951, 55: 644-655.
pmid: 14832754 |
| [38] | Anacker E W. In: Cationic surfactants[M]. E. Jungermann, Ed., Chap. 7. Marcel Dekker, New York, 1970. |
| [39] |
Nemethy G, Scheraga H A. Structure of water and hydrophobic bonding in proteins. 3. Thermodynamic properties of hydrophobic bonds in proteins[J]. J. Phys. Chem., 1962, 66: 1773-3417.
doi: 10.1021/j100816a004 |
| [40] |
Pilpel N. On gel formation in soaps[J]. J. Colloid Sci., 1954, 9: 285-299.
doi: 10.1016/0095-8522(54)90039-2 |
| [41] |
Pilpel N. Viscoelasticity in aqueous soap solutions[J]. J. Phys. Chem., 1956, 60: 779-782.
doi: 10.1021/j150540a018 |
| [42] |
Gravsholt S. Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents[J]. J. Colloid Interface Sci., 1976, 57(3): 575-577.
doi: 10.1016/0021-9797(76)90236-8 |
| [43] |
Ulmius J, Wennerström H, Johansson L B Å, et al. Viscoelasticity in surfactant solutions: characteristics of the micellar aggregates and the formation of periodic colloidal structures[J]. J. Phys. Chem., 1979, 83(17): 2232-2236.
doi: 10.1021/j100480a010 |
| [44] |
Appell J, Porte G. An investigation on the micellar shape using angular dissymmetry of light scattered by solutions of cetylpyridinium bromide[J]. J. Colloid Interface Sci., 1981, 81(1): 85-90.
doi: 10.1016/0021-9797(81)90305-2 |
| [45] |
Ikeda S, Hayashi S, Imae T. Rodlike micelles of sodium dodecyl sulfate in concentrated sodium halide solutions[J]. J. Phys. Chem. 1981, 85(1), 106-112.
doi: 10.1021/j150601a024 |
| [46] |
Imae T, Kamiya R, Ikeda S. Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions[J]. J. Colloid Interface Sci., 108(1): 215-225.
doi: 10.1016/0021-9797(85)90253-X |
| [47] | Manohar C, Rao U R K, Valaulikar B S, et al. On the origin of viscoelasticity in micellar solutions of cetyltrimethylammonium bromide and sodium salicylate[J]. J. Chem. Soc., Chem. Commun., 1986(5): 379-381. |
| [48] |
Lin T L, Chem S H, Gabriel N E, et al. Small-angle neutron scattering techniques applied to the study of polydisperse rodlike diheptanoylphosphatidylcholine micelles[J]. J. Phys. Chem. 1987, 91(2): 406-413.
doi: 10.1021/j100286a031 |
| [49] |
Lin Z, Scriven L E, Davis H T. Cryogenic electron microscopy of rodlike or wormlike micelles in aqueous solutions of nonionic surfactant hexaethylene glycol monohexadecyl ether[J]. Langmuir, 1992, 8: 2200-2205.
doi: 10.1021/la00045a021 |
| [50] |
Zana R, Talmon Y. Dependence of aggregate morphology on structure of dimeric surfactants[J]. Nature, 1993, 362: 228-230.
doi: 10.1038/362228a0 |
| [51] |
Danino D, Talmon Y, Levy H, et al. Branched threadlike micelles in an aqueous solution of a trimeric surfactant[J]. Science, 1995, 269(5229): 1420-1421.
pmid: 17731153 |
| [52] |
Cates M E. Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution[J]. J. Phys. Fr., 1988, 49: 1593-1600.
doi: 10.1051/jphys:019880049090159300 |
| [53] |
Cates M E. Reptation of living polymers-Dynamics of entangled polymers in the presence of reversible chain-scission reactions[J]. Macromolecules, 1987, 20: 2289-2296.
doi: 10.1021/ma00175a038 |
| [54] |
Magid L J. The surfactant-polyelectrolyte analogy[J]. J. Phys. Chem. B, 1998, 102: 4064-4074.
doi: 10.1021/jp9730961 |
| [55] |
Padding J T, Briels W J, Stukan M R, et al. Review of multi-scale particulate simulation of the rheology of wormlike micellar fluids[J]. Soft Matter, 2009, 5: 4367-4375.
doi: 10.1039/b911329k |
| [56] |
Rehage H, Hoffmann H. Rheological properties of viscoelastic surfactant systems[J]. J. Phys. Chem., 1988, 92(16): 4712-4719.
doi: 10.1021/j100327a031 |
| [57] |
Rehage H, Hoffmann H. Viscoelastic surfactant solutions: model systems for rheological research[J]. Mol. Phys., 1991, 74(5): 933-973.
doi: 10.1080/00268979100102721 |
| [58] | Rehage H, Hoffmann H. Viscoelastic surfactant solutions[C]// Herb C A, Prud’homme R K, eds. Structure and Flow in Surfactant Solutions. ACS Symp. Ser. 578, Washington DC, 1994: 22-31. |
| [59] | Yang J. Viscoelastic wormlike micelles and their applications[J]. Curr. Opi. Colloid Interface Sci., 2002, 7(5-6): 276-281. |
| [60] | Chase B, Chmilowski W, Dang Y, et al. Clear fracturing fluids for increased well productivity[J]. Oilfield Rev., 1997(3): 20-33. |
| [61] | 牟建海, 李干佐, 肖洪地, 廖广志, 刘奕, 黄丽, 李伯勤. 阴离子表面活性剂AES虫状胶束的形成[J]. 科学通报, 2001, 46(9): 723-726. |
| [62] |
Chu Z, Dreiss C A, Feng Y. Smart wormlike micelles[J]. Chem. Soc. Rev., 2013, 42(17): 7174-7203.
doi: 10.1039/c3cs35490c pmid: 23545844 |
| [63] | Feng Y, Chu Z, Dreiss C A. Smart wormlike micelles: design, characteristics and applications[J]. Springer, Berlin, 2015. |
| [1] | 廖紫莹, 闵凡, 楚宗霖. 基于动态亚胺键的智能表面活性剂蠕虫胶束[J]. 日用化学工业(中英文), 2026, 56(1): 1-7. |
| [2] | 张婉萍, 孟德旭, 刘凯凯, 王平礼, 张倩洁, 李成亮. 基于离子配位的多巴胺改性透明质酸钠组装行为及乳化性能[J]. 日用化学工业(中英文), 2025, 55(8): 1006-1016. |
| [3] | 李凤钦, 耿涛, 周婧洁, 孙晋源, 张科, 王春雨. 对不同催化剂催化十二醇和1, 2-环氧丁烷反应的机理和性能研究[J]. 日用化学工业(中英文), 2025, 55(8): 998-1005. |
| [4] | 张倩洁, 赵振志, 王珊珊, 顾洁, 吕智, 张婉萍. 聚甘油酯类乳化剂疏水基对液晶形成的影响及其促进机制研究[J]. 日用化学工业(中英文), 2025, 55(12): 1552-1559. |
| [5] | 王泽奕, 董姝丽. G-四联体研究中的核磁共振技术[J]. 日用化学工业(中英文), 2025, 55(11): 1361-1377. |
| [6] | 孔令灿,韩毅. 银纳米簇二维组装体合成、发光与抑菌性能[J]. 日用化学工业(中英文), 2025, 55(10): 1236-1244. |
| [7] | 赵学艳,黄静宜,肖瑞杰,曹桂荣. 咪唑离子液体与辛烷磺酸钠复配体系的聚集行为[J]. 日用化学工业(中英文), 2024, 54(8): 887-894. |
| [8] | 储鹏举, 余晓玲, 侯克期, 王文慧, 李隆杰, 葛际江. 金属离子Mn2+对α-烯烃磺酸钠/月桂酰胺丙基羟磺基甜菜碱蠕虫状胶束形成的调控作用研究[J]. 日用化学工业(中英文), 2024, 54(6): 621-629. |
| [9] | 赵淋淋, 焦宇恬, 赵莉, 王策, 徐宝财. 一种含偶氮苯的二肽表面活性剂的合成及自组装行为[J]. 日用化学工业(中英文), 2024, 54(5): 507-513. |
| [10] | 刘庆刚. 表面活性剂对PCMX抑菌效果影响研究[J]. 日用化学工业(中英文), 2024, 54(10): 1211-1217. |
| [11] | 张婉萍, 林延忠, 张倩洁, 张冬梅, 蒋汶. Ca2+介导的月桂酰甲基牛磺酸钠相行为研究[J]. 日用化学工业(中英文), 2024, 54(1): 32-37. |
| [12] | 牛奇奇,吕其超,董朝霞,张风帆,王洪勃. 含蠕虫胶束的泡沫体系的性能研究进展[J]. 日用化学工业(中英文), 2023, 53(8): 915-924. |
| [13] | 潘婷, 吴俊辉, 裴晓梅, 崔正刚. 新型拟双子表面活性剂构筑的蠕虫状胶束及其pH和温度响应行为[J]. 日用化学工业(中英文), 2023, 53(12): 1361-1368. |
| [14] | 梁亦欢,杜晶. 洗发水体系低温“果冻”现象流变学研究及改善[J]. 日用化学工业, 2022, 52(9): 920-929. |
| [15] | 窦欣. 凝胶软物质体系的超分子结构多样性分析[J]. 日用化学工业, 2022, 52(9): 945-950. |
|
||
