[1] |
Byrne G T, Linstead R P, Lowe A R. 213. Phthalocyanines. Part Ⅱ. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide[J]. Journal of the Chemical Society (Resumed), 1934: 1017-1022.
|
[2] |
Sharman W M, van Lier J E. Synthesis and photodynamic activity of novel asymmetrically substituted fluorinated phthalocyanines[J]. Bioconjugate Chemistry, 2005, 16(5): 1166-1175.
doi: 10.1021/bc0500241
pmid: 16173794
|
[3] |
Aktaş A, Acar İ, Saka E T, et al. Fluoro functional groups substituted cobalt(Ⅱ), iron(Ⅱ) phthalocyanines and their catalytic properties on benzyl alcohol oxidation[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 86(3-4): 183-190.
|
[4] |
Shinohara H, Tsaryova O, Schnurpfeil G, et al. Differently substituted phthalocyanines: Comparison of calculated energy levels, singlet oxygen quantum yields, photo-oxidative stabilities, photocatalytic and catalytic activities[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(1-2): 50-57.
|
[5] |
Zheng W, Wan C Z, Zhang J X, et al. Facile synthesis of phthalocyanine at low temperature with diisopropylamide anion as nucleophile[J]. Tetrahedron Letters, 2015, 56(30): 4459-4462.
|
[6] |
李静璇. 富氮吡啶基铁酞菁衍生物及其负载纤维催化活化PMS降解有机污染物的研究[D]. 杭州: 浙江理工大学, 2022.
|
[7] |
杨飞. 双核金属酞菁萘的设计合成及其对锂/亚硫酰氯电池催化性能评价[D]. 西安: 西北大学, 2015.
|
[8] |
蔡丽君. 新型金属酞菁聚合物的制备及性能研究[D]. 长春: 长春理工大学, 2018.
|
[9] |
李敏章. 八甲基取代金属酞菁复合材料的制备及其光/电催化研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
[10] |
牛素冉. 石墨烯-双核金属酞菁复合催化剂的制备及催化氧化性能研究[D]. 青岛: 中国石油大学(华东), 2018.
|
[11] |
丁翔. 磺酸基酞菁铜/聚吡咯柔性复合织物气敏传感器的研究[D]. 天津: 天津工业大学, 2018.
|
[12] |
王露英. 金属酞菁复合材料的制备及其催化氧化性能研究[D]. 常州: 常州大学, 2021.
|
[13] |
王秀秀. 二苯甲酮氧桥双核酞菁的合成及性能[D]. 太原: 中北大学, 2021.
|
[14] |
符亚苹. 醌类桥联双核酞菁光敏染料的制备及其性能研究[D]. 太原: 中北大学, 2023.
|
[15] |
Mthethwa T P, Tuncel S, Durmus M, et al. Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate[J]. Dalton Trans, 2013, 42(14): 4922-4930.
doi: 10.1039/c3dt32698e
pmid: 23385542
|
[16] |
Zhou X, He X, Wei S, et al. Au nanorods modulated NIR fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine[J]. Journal of Colloid and Interface Science, 2016, 482: 252-259.
doi: S0021-9797(16)30540-9
pmid: 27505278
|
[17] |
Lin D, Wang Y, Zhang Q, et al. The substituted amino group type dependent sensitivity enhancing of cationic phthalocyanine derivatives for photodynamic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315: 107-120.
|
[18] |
Znoiko S A, Akopova O B, Bumbina N V, et al. Synthesis and properties of sulfo and alkylsulfamoyl substituted CuⅡ and NiⅡ phthalocyanines bearing 1-benzotryazolyl and 4-(1-methyl-1-phenylethyl)phenoxy groups[J]. Macroheterocycles, 2014, 7(3): 287-295.
|
[19] |
Yucel B, Sanli B, Soylemez H, et al. Synthesis and electro-spectroelectrochemistry of ferrocenyl naphthaquinones[J]. Tetrahedron, 2011, 67(7): 1406-1421.
|
[20] |
奚强, 刘常坤, 赵春芳, 等. 酞菁钴催化氧化脱硫的机理研究[J]. 石油学报(石油加工), 1998 (2): 100-102.
|
[21] |
Zhang J, Li J, Ren T, et al. Oxidative desulfurization of dibenzothiophene based on air and cobalt phthalocyanine in an ionic liquid[J]. RSC Advances, 2014, 4(7): 3206-3210.
|
[22] |
薛科创. 一种脱硫催化剂(四羟基酞菁铝复合碳纳米管)的制备及其催化活性研究[J]. 化学工程师, 2020, 34(4): 5-8.
|
[23] |
Tripathi D, Negi H, Singh R K, et al. Synthesis of N-benzylated cobalt phthalocyaninetetrasulfonamide and its application in oxidative desulfurization catalysis[J]. Journal of Coordination Chemistry, 2019, 72(17): 2982-2996.
|
[24] |
Tian M, He Y, Zhang G. Carbon nanotubes wrapped phthalocyanine: enhanced oxidative desulfurization for dibenzothiophene in fuel[J]. Journal of Nanoparticle Research, 2021, 23(10): 223.
|
[25] |
张雨帆, 谭阿敏, 田敏, 等. 聚合金属酞菁仿生催化氧化燃油脱硫性能研究[J]. 现代化工, 2021, 41(7): 118-121, 127.
doi: 10.16606/j.cnki.issn0253-4320.2021.07.025
|
[26] |
Sorokin A B. From mononuclear iron phthalocyanines in catalysis to μ-nitrido diiron complexes and beyond[J]. Catalysis Today, 2021, 373: 38-58.
|
[27] |
Yılmaz Y. Preparation of a phthalocyanine-nanometal-coated silica microparticle conjugate as heterogeneous photocatalyst and investigation of its photocatalytic activity[J]. ChemistrySelect, 2021, 6(28): 7223-7231.
|
[28] |
Iliev V, Mihaylova A. Photooxidation of sodium sulfide and sodium thiosulfate under irradiation with visible light catalyzed by water soluble polynuclear phthalocyanine complexes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1): 23-30.
|
[29] |
张勇. 金属酞菁多相催化剂的制备及其光催化性能研究[D]. 青岛: 中国石油大学(华东), 2017.
|
[30] |
Zhang X, Wang Y, Gu M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9): 684-692.
|
[31] |
Kusama S, Saito T, Hashiba H, et al. Crystalline copper(Ⅱ) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media[J]. ACS Catalysis, 2017, 7(12): 8382-8385.
|
[32] |
Choi J, Wagner P, Gambhir S, et al. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO[J]. ACS Energy Letters, 2019, 4(3): 666-672.
|