日用化学工业(中英文) ›› 2023, Vol. 53 ›› Issue (3): 316-324.doi: 10.3969/j.issn.1001-1803.2023.03.010
张晨韵1,张国新1,沈璟虹1,金建交1,许铭星1,辛炳炜2,*()
收稿日期:
2022-03-21
修回日期:
2023-02-27
出版日期:
2023-03-22
发布日期:
2023-03-22
基金资助:
Zhang Chenyun1,Zhang Guoxin1,Shen Jinghong1,Jin Jianjiao1,Xu Mingxing1,Xin Bingwei2,*()
Received:
2022-03-21
Revised:
2023-02-27
Online:
2023-03-22
Published:
2023-03-22
Contact:
* Tel.: +86-13001716787, E-mail: 摘要:
离子液体和低共熔溶剂((类)离子液体)独特的结构使其具有蒸气压低等特殊的物理化学性质,是公认的绿色、环保溶剂。近年来,利用(类)离子液体制备结构新颖、性能优异的镍基催化剂在电解水领域受到普遍关注。(类)离子液体在制备镍基催化剂过程中可作为介质、模板甚至反应物,不但能够获得性能优异的催化剂,而且可以简化反应体系、减少排放,实现原子经济。结合课题组的工作,按照镍基催化剂的种类,详细综述了镍基水裂解催化剂在(类)离子液体中的研究进展,并分析了该领域未来可能的发展方向。
中图分类号:
张晨韵, 张国新, 沈璟虹, 金建交, 许铭星, 辛炳炜. 基于(类)离子液体的镍基催化剂研究进展[J]. 日用化学工业(中英文), 2023, 53(3): 316-324.
Zhang Chenyun, Zhang Guoxin, Shen Jinghong, Jin Jianjiao, Xu Mingxing, Xin Bingwei. Research progress of nickel-based catalysts mediated by (quasi) ionic liquids[J]. China Surfactant Detergent & Cosmetics, 2023, 53(3): 316-324.
[1] |
Ma W, Yuan H, Wang H, et al. Identifying catalytically active mononuclear peroxoniobate anion of ionic liquids in the epoxidation of olefins[J]. ACS Catalysis, 2018, 8 (5) : 4645-4659.
doi: 10.1021/acscatal.7b04443 |
[2] |
Shamshina J L, Kelley S P, Gurau G, et al. Chemistry: Develop ionic liquid drugs[J]. Nature, 2015, 528 (7581) : 188-189.
doi: 10.1038/528188a |
[3] |
Khan M I, Mubashir M, Zaini D, et al. Cumulative impact assessment of hazardous ionic liquids towards aquatic species using risk assessment methods[J]. Journal of Hazardous Materials, 2021, 415: 125364.
doi: 10.1016/j.jhazmat.2021.125364 |
[4] |
Smith E L, Abbott A P, Ryder K S, et al. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114 (21) : 11060-11082.
doi: 10.1021/cr300162p pmid: 25300631 |
[5] | Alexandre P, Rita C, Ivo A, et al. Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chemistry & Engineering, 2014, 2 (5) : 1063-1071. |
[6] |
Fan Y, Luo H, Zhu C, et al. Hydrophobic natural alcohols based deep eutectic solvents: Effective solvents for the extraction of quinine[J]. Separation and Purification Technology, 2021, 275: 119112.
doi: 10.1016/j.seppur.2021.119112 |
[7] |
Zhang C, Xin B, Chen T, et al. Deep eutectic solvent strategy enables an octahedral Ni-Co precursor for creating high-performance NiCo2O4 catalyst toward oxygen evolution reaction[J]. Green Energy and Environment, 2022, 7 (6) : 1217-1227.
doi: 10.1016/j.gee.2021.01.017 |
[8] | Nannan Ren. Measurement and study of density, viscosity and surface tension of ionic liquid system[D]. Beijing: Beijing University of Chemical Technology, 2013. |
[9] | Cao Y, Guo S, Yu C, et al. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8 (31) : 15767-15773. |
[10] | Zhang C, Xin B, Xi Z, et al. Phosphonium-based ionic liquid: A new phosphorus source toward microwave-driven synthesis of nickel phosphide for efficient hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (1) : 1468-1477. |
[11] | Irfan A G, Syed A M, Rafiullah K. Green hydrogen production potential for developing a hydrogen economy in Pakistan[J]. International Journal of Hydrogen Energy, 2018: 1-29. |
[12] |
Wang H, Chen L, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Society Reviews, 2020, 49 (5) : 1414-1448.
doi: 10.1039/C9CS00906J |
[13] | Qin B, Guo F, Li T. MOFs derived self-supported Co9S8/Ni3S2 nanosheet arrays for efficient electrocatalytic water splitting[J]. Chemical Reagents, 2021, 43 (11) : 1480-1485. |
[14] | Xia J, Dhaka K, Volokh M, et al. Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction[J]. Sustainable Energy & Fuels, 2019, 3 (8) : 2006-2014. |
[15] |
Ma B, Yang Z, Chen Y, et al. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes[J]. Nano Research, 2019, 12 (2) : 375-380.
doi: 10.1007/s12274-018-2226-2 |
[16] | Gao Jianfei. Exploration of synthesis and electrochemical energy storage properties of transition metal elementary substance and alloy phase materials[D]. Lanzhou: Lanzhou University of Technology, 2019. |
[17] | Wang Yingnan. Preparation of three-dimensional nickel-based alloy catalyst and its application in hydrogen production from water electrolysis[D]. Harbin: Harbin Institute of Technology, 2021. |
[18] |
Bajdich M, García-Mota M, Vojvodic A, et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water[J]. Journal of the American Chemical Society, 2013, 135 (36) : 13521-13530.
doi: 10.1021/ja405997s pmid: 23944254 |
[19] |
Wang Q, Hare D O. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemistry Reviews, 2012, 112 (7) : 4124-4155.
doi: 10.1021/cr200434v |
[20] | Pan Y, Liu Y, Zhao J, et al. Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3 (4) : 1656-1665. |
[21] |
Kolleboyina J, Masa J, Tomanec O, et al. Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution[J]. Advanced Functional Materials, 2017, 27: 1700451.
doi: 10.1002/adfm.201700451 |
[22] |
Mou J, Ren Y, Wang J, et al. Nickel oxide nanoparticle synthesis and photocatalytic applications: Evolution from conventional methods to novel microfluidic approaches[J]. Microfluidics and Nanofluidics, 2022, 26 (4) : 1-20.
doi: 10.1007/s10404-021-02503-1 |
[23] |
Protsenko V S, Bogdanov D A, Korniy S A, et al. Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44 (45) : 24604-24616.
doi: 10.1016/j.ijhydene.2019.07.188 |
[24] |
Yadav V, Jeong S, Ye X, et al. Surface-limited galvanic replacement reactions of Pd, Pt, and Au onto Ag core nanoparticles through redox potential tuning[J]. Chemistry of Materials, 2022, 34 (4) : 1897-1904.
doi: 10.1021/acs.chemmater.1c04176 |
[25] |
Yang C, Zhang Q B, Abbott A P. Facile fabrication of nickel nanostructures on a copper-based template via a galvanic replacement reaction in a deep eutectic solvent[J]. Electrochemistry Communications, 2016, 70: 60-64.
doi: 10.1016/j.elecom.2016.07.004 |
[26] |
Gao M Y, Yang C, Zhang Q B, et al. Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution[J]. Electrochemical Acta, 2016, 215: 609-616.
doi: 10.1016/j.electacta.2016.08.145 |
[27] |
Vo T, Hidalgo S D S, Chiang C. Controllable electrodeposition of binary metal films from deep eutectic solvent as an efficient and durable catalyst for the oxygen evolution reaction[J]. Dalton Transactions, 2019, 48 (39) : 14748-14757.
doi: 10.1039/C9DT03028J |
[28] | Gao M Y, Yang C, Zhang Q B, et al. Facile electrochemical preparation of self-supported porous Ni-Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5 (12) : 5797-5805. |
[29] |
Chen Y, Li C, Chen P. Galvanic displacement on electrodeposited tangled Zn nanowire sacrificial template for preparing porous and hollow Ni electrodes in ionic liquid[J]. Journal of Molecular Liquids, 2020, 298: 112050.
doi: 10.1016/j.molliq.2019.112050 |
[30] |
Vijayakumar J, Mohan S, Anand Kumar S, et al. Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2013, 38 (25) : 10208-10214.
doi: 10.1016/j.ijhydene.2013.06.068 |
[31] |
Lu Y, Geng S, Wang S, et al. Electrodeposition of NiMoCu coatings from roasted nickel matte in deep eutectic solvent for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44 (12) : 5704-5716.
doi: 10.1016/j.ijhydene.2019.01.072 |
[32] |
Jiang J, Chang L, Zhao W, et al. An advanced FeCoNi nitro-sulfide hierarchical structure from deep eutectic solvents for enhanced oxygen evolution reaction[J]. Chemical Communications, 2019, 55 (68) : 10174-10177.
doi: 10.1039/C9CC05389A |
[33] |
Gao M Y, Sun C B, Lei H, et al. Nitrate-induced and in situ electrochemical activation synthesis of oxygen deficiencies-rich nickel/nickel (oxy)hydroxide hybrid films for enhanced electrocatalytic water splitting[J]. Nanoscale, 2018, 10 (37) : 17546-17551.
doi: 10.1039/c8nr06459h pmid: 30225498 |
[34] |
Sun C B, Guo M W, Siwal S S, et al. Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect[J]. Journal of Catalysis, 2020, 381: 454-461.
doi: 10.1016/j.jcat.2019.11.034 |
[35] |
Zhang C, Chen T, Zhang H, et al. Hydrated-metal-halide-based deep-eutectic-solvent-mediated NiFe layered double hydroxide: An excellent electrocatalyst for urea electrolysis and water splitting[J]. Chemistry: An Asian Journal, 2019, 14 (17) : 2995-3002.
doi: 10.1002/asia.v14.17 |
[36] | Ge X, Gu C D, Wang X L, et al. Ionothermal synthesis of cobalt iron layered double hydroxides (LDHs) with expanded interlayer spacing as advanced electrochemical materials[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2 (40) : 17066-17076. |
[37] |
Yang C, Gao M Y, Zhang Q B, et al. In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction[J]. Nano Energy, 2017, 36: 85-94.
doi: 10.1016/j.nanoen.2017.04.032 |
[38] | Zeng J R, Gao M Y, Zhang Q B, et al. Facile electrodeposition of cauliflower-like S-doped nickel microsphere films as highly active catalysts for electrochemical hydrogen evolution[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5 (29) : 15056-15064. |
[39] |
Zeng J, Liu J, Siwal S S, et al. Morphological and electronic modification of 3D porous nickel microsphere arrays by cobalt and sulfur dual synergistic modulation for overall water splitting electrolysis and supercapacitors[J]. Applied Surface Science, 2019, 491: 570-578.
doi: 10.1016/j.apsusc.2019.06.182 |
[40] |
Jiang J, Yan C, Zhao X, et al. A Pegylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo2S4 for efficient oxygen evolution reaction[J]. Green Chemistry, 2017, 19 (13) : 3023-3031.
doi: 10.1039/C7GC01012E |
[41] |
Zhao X, Lan X, Yu D, et al. Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions[J]. Chemical Communications, 2018, 54 (92) : 13010-13013.
doi: 10.1039/C8CC08045C |
[42] |
Zhang D, Mou H, Chen L, et al. Surface/interface engineering N-doped carbon/NiS2 nanosheets for efficient electrocatalytic H2O splitting[J]. Nanoscale, 2020, 12 (5) : 3370-3376.
doi: 10.1039/C9NR10173J |
[43] |
Zhang D, Mou H, Lu F, et al. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting[J]. Applied Catalysis B: Environmental, 2019, 254: 471-478.
doi: 10.1016/j.apcatb.2019.05.029 |
[44] |
Zhang D, Mou H, Chen L, et al. Design and in-situ synthesis of unique catalyst via embedding graphene oxide shell membrane in NiS2 for efficient hydrogen evolution[J]. Applied Surface Science, 2020, 510: 145483.
doi: 10.1016/j.apsusc.2020.145483 |
[45] | Mou H, Wang J, Yu D, et al. A facile and controllable, deep eutectic solvent aided strategy for the synthesis of graphene encapsulated metal phosphides for enhanced electrocatalytic overall water splitting[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7 (22) : 13455-13459. |
[46] |
Roberts E J, Read C G, Lewis N S, et al. Phase directing ability of an ionic liquid solvent for the synthesis of HER-active Ni2P nanocrystals[J]. ACS Applied Energy Materials, 2018, 1 (5) : 1823-1827.
doi: 10.1021/acsaem.8b00213 |
[47] | Zhang G, Xu Q, Liu Y, et al. Red phosphorus as self-template to hierarchical nanoporous nickel phosphides toward enhanced electrocatalytic activity for oxygen evolution reaction[J]. Electrochimical Acta, 2020, 332: 135500. |
[48] |
Zhao Y, Zhao Y, Feng H, et al. Synthesis of nickel phosphide nano-particles in a eutectic mixture for hydrotreating reactions[J]. Journal of Materials Chemistry, 2011, 21 (22) : 8137-8145.
doi: 10.1039/c1jm10230c |
[49] | Sun C, Zeng J, Lei H, et al. Direct electrodeposition of phosphorus-doped nickel superstructures from choline chloride-ethylene glycol deep eutectic solvent for enhanced hydrogen evolution catalysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (1) : 1529-1537. |
[50] |
Xiao J, Zhang Z, Zhang Y, et al. Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes[J]. Nano Energy, 2018, 51: 223-230.
doi: 10.1016/j.nanoen.2018.06.040 |
[51] |
Zhao X, Xue Z, Chen W, et al. Eutectic synthesis of high‐entropy metal phosphides for electrocatalytic water splitting[J]. Chemsuschem, 2020, 13: 2038-2042.
doi: 10.1002/cssc.v13.8 |
[52] |
Ying H, Zhang C, Chen T, et al. A new phosphonium-based ionic liquid to synthesize nickel metaphosphate for hydrogen evolution Reaction[J]. Nanotechnology, 2020, 31 (50): 505402.
doi: 10.1088/1361-6528/abb508 |
[53] | Bai X, Wang Q, Xu G R, et al. Phosphorus and fluorine co-doping induced enhancement of oxygen evolution reaction in bimetallic nitride nanorods arrays: Ionic liquid-driven and mechanism clarification[J]. Chemistry-A European Journal, 2017, 66 (23) : 16862-16870. |
[1] | 张红梅, 张永民. [芥酰胺苯甲酸][胆碱]离子液体表面活性剂的合成及性能研究[J]. 日用化学工业(中英文), 2024, 54(2): 149-155. |
[2] | 王萌斐,杜连智,许江辉,白东蕊,张炎,晁建平. 离子液体催化氯乙酸甲酯合成氯乙酸-2-庚酯的研究[J]. 日用化学工业, 2022, 52(6): 601-605. |
[3] | 李军,王杰,李晖,姚陈忠,谷莹秋,史利娟. TX-100在离子液体EAN/PEG-200混合溶液中的聚集行为研究[J]. 日用化学工业, 2020, 50(5): 304-308. |
[4] | 惠蒙蒙,白亚榕,杨许召,张晨龙,王军. N-酰基氨基酸型表面活性剂与离子液体表面活性剂复配体系流变性研究[J]. 日用化学工业, 2020, 50(10): 681-686. |
[5] | 王英磊,李文欢,耿孝彬,李津,谢英男. 低共熔溶剂中乙酸异戊酯的绿色合成[J]. 日用化学工业, 2020, 50(10): 693-697. |
[6] | 杨许召,王军,方云. 非对称Gemini离子液体表面活性剂的制备及表面活性[J]. 日用化学工业, 2019, 49(5): 279-285. |
[7] | 白龙,刘晓臣,王晓朋,霍月青,牛金平. 离子液体催化合成双烷基二苯醚[J]. 日用化学工业, 2018, 48(9): 516-520. |
[8] | 吴国鹏,侯兆伟,吴奥丽,郑利强,孙继超. 新型表面活性离子液体聚集行为的研究进展[J]. 日用化学工业, 2018, 48(9): 534-540. |
[9] | 侯兆伟,张福玲,伍晓林,孙继超,郑利强. 1-丁基-3-甲基咪唑表面活性离子液体的界面膨胀流变行为研究[J]. 日用化学工业, 2018, 48(8): 423-429. |
[10] | 汤小芳, 刘显明, 周思言, 李双. 功能化离子液体[C3SO3Hnhm]HSO4催化合成苯并氧杂蒽[J]. 日用化学工业, 2018, 48(11): 627-631. |
[11] | 王萍, 杨许召, 邹文苑, 徐清杰, 王军. 离子液体表面活性剂的合成与应用(Ⅸ)——杀菌性能[J]. 日用化学工业, 2017, 47(9): 487-491. |
[12] | 邹文苑, 杨许召, 王萍, 徐清杰, 王军. 离子液体表面活性剂的合成与应用(Ⅷ)——在分析中的应用[J]. 日用化学工业, 2017, 47(8): 425-429. |
[13] | 徐清杰, 杨许召, 王萍, 邹文苑, 王军. 离子液体表面活性剂的合成与应用(Ⅶ)——在化学反应中的应用[J]. 日用化学工业, 2017, 47(7): 365-368. |
[14] | 王萍, 杨许召, 徐清杰, 邹文苑, 王军. 离子液体表面活性剂的合成与应用(Ⅵ) ——离子液体表面活性剂的界面张力[J]. 日用化学工业, 2017, 47(6): 307-311. |
[15] | 邹文苑, 杨许召, 徐清杰, 王萍, 王军. 离子液体表面活性剂的合成与应用(Ⅴ)——离子液体表面活性剂的聚集热力学和状态[J]. 日用化学工业, 2017, 47(5): 251-256. |
|