[1] |
Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809):239-247.
doi: 10.1038/35041687
|
[2] |
Kang D H, Kang S W. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease[J]. Biomolecules & Therapeutics, 2013, 21(2):89-96.
|
[3] |
Yang Z P, Si S H, Zhang C J. Magnetic single-enzyme nanoparticles with high activity and stability[J]. Biochemical & Biophysical Research Communications, 2008, 367(1):169-175.
|
[4] |
Zhao X B, Qian H. Application of superoxide dismutase artificial cells (AC-SOD) in cosmetics[J]. China Surfactant Detergent & Cosmetics, 1995, 5:6-8.
|
[5] |
Humphrey H P Y, Paul A W. Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid[J]. Journal of Materials Chemistry, 2005, 15(35/36):3690-3700.
doi: 10.1039/b506090g
|
[6] |
Remy R, Linda B, Nathalie S, et al. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules[J]. Angewandte Chemie-International Edition, 2018, 57(49):16141-16146.
doi: 10.1002/anie.v57.49
|
[7] |
Xiang Y, Matthew C Z, Alexander V K, et al. Pluronicmodified superoxide dismutase 1 attenuates angiotensin-induced increase in intracellular superoxideinneurons[J]. Free Radical Biology & Medicine, 2010, 49(4):548-555.
doi: 10.1016/j.freeradbiomed.2010.04.039
|
[8] |
Tomoaki I, Ken-Ichiro T, Yuichi T, et al. Therapeutic effect of lecithinized superoxide dismutase against colitis[J]. Journal of Pharmacology & Experimental Therapeutics, 2009, 328(1):152-164.
|
[9] |
Liu J, Zhao T, Tan H, et al. Pharmacokinetic analysis of in vivo disposition of heparin-superoxide dismutase[J]. Biomedicine & Pharmacotherapy, 2010, 64(10):686-691.
doi: 10.1016/j.biopha.2010.09.008
|
[10] |
Harisankar S, Amirul I M, Chandrakanta J, et al. Coimmunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu-Zn superoxide dismutase protein against brucella abortus[J]. Vaccine, 2011, 29(29/30):4720-4727.
doi: 10.1016/j.vaccine.2011.04.088
|
[11] |
Cheung C Y, McCartney S J, Anseth K S. Synjournal of polymerizable superoxide dismutase mimetics to reduce reactive oxygen species damage in transplanted biomedical devices[J]. Advanced Functional Materials, 2008, 18(20):3119-3126.
doi: 10.1002/adfm.v18:20
|
[12] |
Han Z P, Ye J Z, Luo R Q. Progress of immobilized enzymes in preparation and application in food processing field[J]. Storage & Process, 2012, 12(5):48-53.
|
[13] |
Fang Y P, Cao L Q, Lu W, et al. Egg-box model-based gelation of alginate and pectin: a review[J]. Carbohydrate Polymers, 2020, 242:116389.
doi: 10.1016/j.carbpol.2020.116389
|
[14] |
Li M, Wang W, Chu L Y, et al. Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria[J]. ACS Applied Materials Interfaces, 2014, 6(8):5962-5970.
doi: 10.1021/am501011j
|
[15] |
Wang J Y, Yu H R, Xie R, et al. Alginate/protamine/silica hybrid capsules with ultrathin membranes for laccase immobilization[J]. AIChE Journal, 2013, 59(2):380-389.
doi: 10.1002/aic.v59.2
|
[16] |
Zhang Y F, Wu H, Li J, et al. Protamine-templated biomimetic hybrid capsules: efficient and stable carrier for enzyme encapsulation[J]. Chemistry of Materials, 2008, 20(3):1041-1048.
doi: 10.1021/cm701959e
|
[17] |
Klibanov A M. Improving enzymes by using them in organic solvents[J]. Nature, 2001, 409(6817):241-246.
doi: 10.1038/35051719
|
[18] |
Xie C Y, Meng S X, Meng T, et al. Light and magnetic dual-responsive Pickering emulsion micro-reactors[J]. Langmuir, 2017, 33(49):14139-14148.
doi: 10.1021/acs.langmuir.7b03642
|
[19] |
Wang Y X, Wang J Y, Jiang C Y, et al. Study on adsorption of nitrosamines by hyperbranched poly (amine-ester) modified by octadecyl trichlorosilane[J]. Ion Exchange Adsorption, 2010, 26(4):370-376.
|