[1] |
Karmakar A, M Mileo P G, Bok I, et al. Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release[J]. Angewandte Chemie International Edition, 2020,59:11003-11009.
doi: 10.1002/anie.v59.27
|
[2] |
Zhu J, Lin H, Kim Y, et al. Light-responsive colloidal crystals engineered with DNA[J]. Advanced Materials, 2020,32:1906600.
doi: 10.1002/adma.v32.8
|
[3] |
Gamerith C, Luschnig D, Ortner A, et al. pH-responsive materials for optical monitoring of wound status[J]. Sensors and Actuators B: Chemical, 2019,301:126966.
doi: 10.1016/j.snb.2019.126966
|
[4] |
Liu H, Lin S, Feng Y, et al. CO2-Responsive polymer materials[J]. Polymer Chemistry, 2017,8:12-23.
doi: 10.1039/C6PY01101B
|
[5] |
Lerch M M, Szymański W, Feringa B L. The (photo) chemistry of Stenhouse photoswitches: guiding principles and system design[J]. Chemical Society Reviews, 2018,47:1910-1937.
doi: 10.1039/C7CS00772H
|
[6] |
Harris J D, Moran M J, Aprahamian I. New molecular switch architectures[J]. PNAS, 2018,115:9414-9422.
doi: 10.1073/pnas.1714499115
|
[7] |
Gomes R F A, Coelho J A S, Afonso C A M. Synjournal and applications of Stenhouse salts and derivatives[J]. Chemistry European Journal [J]. 2018,24:9170-9186.
|
[8] |
Balamurugan A, Lee H I. A visible light responsive on-off polymeric photoswitch for the colorimetric detection of nerve agent mimics in solution and in the vapor phase[J]. Macromolecules, 2016,49:2568-2574.
doi: 10.1021/acs.macromol.6b00309
|
[9] |
Chen Q N, Diaz Y J, Hawker M C, et al. Stable activated furan and donor-acceptor Stenhouse adduct polymer conjugates as chemical and thermal sensors[J]. Macromolecules, 2019,52:4370-5.
doi: 10.1021/acs.macromol.9b00533
|
[10] |
Chen Y K, Li Z Y, Wang H Y, et al. Visible light-controlled inversion of pickering emulsions stabilized by functional silica microspheres[J]. Langmuir, 2018,34:2784-2790.
doi: 10.1021/acs.langmuir.7b03822
|
[11] |
Jia S, Fong W K, Graham B, et al. Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications[J]. Chemistry Materials, 2018,30:2873-2887.
doi: 10.1021/acs.chemmater.8b00357
|
[12] |
Helmy S, Oh S, Leibfarth F A, et al. Design and synjournal of donor-acceptor Stenhouse adducts: a visible light photoswitch derived from furfural[J]. Journal Organic Chemistry, 2014,79:11316-11329.
doi: 10.1021/jo502206g
|
[13] |
Helmy S, Leibfarth F A, Oh S, et al. Photoswitching using visible light: a new class of organic photochromic molecules[J]. Journal of the American Chemical Society, 2014,136:8169-8172.
doi: 10.1021/ja503016b
|
[14] |
Donato M D, Lerch M M, Lapini A, et al. Shedding light on the photoisomerization pathway of donor-acceptor Stenhouse adducts[J]. Journal of the American Chemical Society, 2017,139:15596-15599.
doi: 10.1021/jacs.7b09081
|
[15] |
Jia S Y, Tan A, Hawley A, et al. Visible light-triggered cargo release from donor acceptor Stenhouse adduct (DASA)-doped lyotropic liquid crystalline nanoparticles[J]. J Colloid Interface Science, 2019,548:151-159.
doi: 10.1016/j.jcis.2019.04.032
|
[16] |
Velema W A, Szymanski W, Feringa B L. Photopharmacology: beyond proof of principle[J]. Journal of the American Chemical Society [J]. 2014,136:2178-2191.
|
[17] |
Lerch M M, Donato M D, Laurent A D, et al. Solvent effects on the actinic step of donor-acceptor Stenhouse adduct photoswitching[J]. Angewandte Chemie International Edition, 2018,57:8063-8068.
doi: 10.1002/anie.v57.27
|
[18] |
Mallo N, Brown P T, Iranmanesh H, et al. Photochromic switching behaviour of donor-acceptor Stenhouse adducts in organic solvents[J]. Chemical Communications, 2016,52:13576-13579.
doi: 10.1039/C6CC08079K
|
[19] |
Hemmer J R, Poelma S O, Treat N, et al. Tunable visible and nearinfrared photoswitches[J]. Journal of the American Chemical Society, 2016,138:13960-13966.
doi: 10.1021/jacs.6b07434
pmid: 27700083
|
[20] |
Mallo N, Foley E D, Iranmanesh H, et al. Structure-function relationships of donor-acceptor Stenhouse adduct photochromic switches[J]. Chemical Science, 2018,9:8242-8252.
doi: 10.1039/c8sc03218a
pmid: 30542573
|
[21] |
Lerch M M, Hansen M J, Velema W A, et al. Orthogonal photoswitching in a multifunctional molecular system[J]. Nature Communications, 2016,7:12054.
doi: 10.1038/ncomms12054
|
[22] |
Hemmer J R, Page Z A, Clark K D, et al. Controlling dark equilibria and enhancing donor-acceptor Stenhouse adduct photoswitching properties through carbon acid design[J]. Journal of the American Chemical Society, 2018,140:10425-10429.
doi: 10.1021/jacs.8b06067
pmid: 30074782
|
[23] |
Garcia-Iriepa C, Marazzi M, Sampedro D. From light absorption to cyclization: structure and solvent effects in donor-acceptor Stenhouse adducts[J]. Chemphotochem, 2019,3:866-873.
doi: 10.1002/cptc.201900102
|
[24] |
Lerch M M, Wezenberg S J, Szymanski W, et al. Unraveling the photoswitching mechanism in donor-acceptor Stenhouse adducts[J]. Journal of the American Chemical Society, 2016,138:6344-6347.
doi: 10.1021/jacs.6b01722
|
[25] |
Lerch M M, Medved M, Lapini A, et al. Tailoring photoisomerization pathways in donor-acceptor Stenhouse adducts: the role of the hydroxy group[J]. Journal Physical Chemistry A, 2018,122:955-964.
doi: 10.1021/acs.jpca.7b10255
|
[26] |
Saha R, Devaraj A, Bhattacharyya S, et al. Unusual behavior of donor-acceptor Stenhouse adducts in confined space of a water-soluble PdII8 molecular vessel[J]. Journal of the American Chemical Society, 2019,141:8638-8645.
doi: 10.1021/jacs.9b03924
|
[27] |
Poelma S O, Oh S S, Helmy S, et al. Controlled drug release to cancer cells from modular one-photon visible light-responsive micellar system[J]. Chemical Communications, 2016,52:10525-10528.
doi: 10.1039/C6CC04127B
|
[28] |
Seshadri S, Gockowski L F, Lee J, et al. Self-regulating photochemical Rayleigh-Benard convection using a highly-absorbing organic photoswitch[J]. Nature Communications, 2020,11:2599.
doi: 10.1038/s41467-020-16277-7
pmid: 32451397
|
[29] |
Bardeen S H, Li W X, Clark K D, et al. Photoinduced deadhesion of a polymer film using a photochromic donor-acceptor stenhouse adduct[J]. Macromolecules, 2019,52:6311-6317.
doi: 10.1021/acs.macromol.9b00882
|
[30] |
Nau M, Seelinger D, Biesalski M. Independent two way switching of the wetting behavior of cellulose-derived nanoparticle surface coatings by light and by temperature[J]. Advanced Material Interfaces, 2019,6:1900378.
doi: 10.1002/admi.v6.17
|
[31] |
Wang S, Senthilkumar T, Zhou L Y, et al. Conjugated polymer nanoparticles with appended photo-responsive units for controlled drug delivery, release, and imaging[J]. Angewandte Chemie International Edition, 2018,57:13114-13119.
doi: 10.1002/anie.v57.40
|
[32] |
Zheng Y H, Zhao H Q, Wang D S, et al. Surface with reversible green-light-switched wettability by donor-acceptor Stenhouse adducts[J]. Langmuir, 2018,34:15537-15543.
doi: 10.1021/acs.langmuir.8b03296
|
[33] |
Jia S Y, Du J D, Boyd J, et al. Investigation of donor acceptor Stenhouse adducts as new visible wavelength-responsive switching elements for lipid-based liquid crystalline systems[J]. Langmuir, 2017,33:2215-2221.
doi: 10.1021/acs.langmuir.6b03726
|
[34] |
Boesel S F, Ulrich S, de Alaniz J R, et al. Visible light-responsive DASA-polymer conjugates[J]. ACS Macro. Lett., 2017,6:738-742.
doi: 10.1021/acsmacrolett.7b00350
|
[35] |
Wu B, Xue T H, Wang W, et al. Visible light triggered aggregation-induced emission switching with a donor-acceptor Stenhouse adduct[J]. Journal of Materials Chemistry C, 2018,6:8538-8545.
doi: 10.1039/C8TC02621A
|
[36] |
Helmy S, de Alaniz J R. Photochromic and thermochromic heterocycles[M]. In Advances in Heterocyclic Chemistry, 2015,16:131-177.
|
[37] |
Rifaie-Graham O, Ulrich S, Galensowske N F B, et al. Wavelength-selective light-responsive DASA-functionalized polymersome nanoreactors[J]. Journal of the American Chemical Society, 2018,140:8027-8036.
doi: 10.1021/jacs.8b04511
pmid: 29856216
|