[1] |
Jiang J Z, Zhu Y, Cui Z G , et al. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ by a switchable surfactant[J]. Angew. Chem. Int. Ed., 2013,52:12373-12376.
doi: 10.1002/anie.201305947
pmid: 24123666
|
[2] |
Pera-Titus M, Leclercq L, Clacens J M , et al. Pickering interfacial catalysis for biphasic systems: From emulsion design to green reactions[J]. Angew. Chem. Int. Ed., 2015,54:2006-2021.
doi: 10.1002/anie.201402069
pmid: 25644631
|
[3] |
Fernandes D A, Fernandes D D, Li Y , et al. Synjournal of stable multifunctional perfluorocarbon nanoemulsions for cancer therapy and imaging[J]. Langmuir, 2016,32:10870-10880.
doi: 10.1021/acs.langmuir.6b01867
pmid: 27564412
|
[4] |
Tang J, Quinlan P J, Tam K C . Stimuli-responsive Pickering emulsions: Recent advances and potential applications[J]. Soft Matter, 2015,11:3512-3529.
doi: 10.1039/c5sm00247h
pmid: 25864383
|
[5] |
Dexter A F, Malcolm A S, Middelberg A P J . Reversible active switching of the mechanical properties of a peptide film at a fluid-fluid interface[J]. Nature Mater, 2006,5:502-506.
doi: 10.1038/nmat1653
pmid: 16715085
|
[6] |
Wang W, Lu W, Jiang L . Influence of pH on the aggregation morphology of a novel surfactant with single hydrocarbon chain and multi-amine headgroups[J]. J. Phys. Chem. B, 2008,112:1409-1413.
doi: 10.1021/jp075535u
pmid: 18197654
|
[7] |
Liu Y, Jessop P G, Cunningham M , et al. Switchable surfactants[J]. Science, 2006,313:958-960.
doi: 10.1126/science.1128142
pmid: 16917059
|
[8] |
Zhou M, Wang G, Xu Y , et al. Synjournal and performance evaluation of CO2/N2 switchable tertiary amine gemini surfactant[J]. J. Surf. Deterg., 2017,20(25) : 1-7.
doi: 10.1007/s11743-016-1917-5
|
[9] |
Lee H Y, Diehn K K, Sun K , et al. Reversible photorheological fluids based on spiropyran-doped reverse micelles[J]. J. Am. Chem. Society, 2011,133:8461-8463.
doi: 10.1021/ja202412z
pmid: 21563769
|
[10] |
Jiang J Z, Ma Y, Cui Z G , et al. Pickering emulsions responsive to CO2/N2 and light dual stimuli at ambient temperature[J]. Langmuir, 2016,32(34) : 8668-8675.
doi: 10.1021/acs.langmuir.6b01475
pmid: 27477238
|
[11] |
Saji T, Hoshino K, Aoyagui S . Reversible formation and disruption of micelles by control of the redox state of the head group[J]. J. Am. Chem. Society, 1985,107:6865-6868.
doi: 10.1021/ja00310a020
|
[12] |
Ma N, Xu H, An L , et al. Radiation-sensitive diselenide block copolymer micellar aggregates: toward the combination of radiotherapy and chemotherapy[J]. Langmuir, 2011,27(10) : 5874-5878.
doi: 10.1021/la2009682
pmid: 21488607
|
[13] |
Brown P, Bushmelev A, Butts C P , et al. Magnetic control over liquid surface properties with responsive surfactants[J]. Angew. Chem. Int. Ed., 2012,51:2414-2416.
doi: 10.1002/anie.201108010
pmid: 22266983
|
[14] |
Wang B G, Lei L, Zheng C C , et al. pH and temperature-responsive wormlike micelles formed by single amine oxide surfactant[J]. J. Disper. Sci. Technol., 2018,39:539-547.
doi: 10.1080/01932691.2017.1334212
|
[15] |
Binks B P, Horozov T S. Colloid particles at liquid interfaces[M]. Cambridge: Cambridge University Press, 2006.
|
[16] |
Paunov V N, Cayre O . Supraparticles and “Janus” particles fabricated by replication of particle monolayer at liquid surfaces using a gel trapping technique[J]. Adv. Mater., 2004,16:788-791.
doi: 10.1002/(ISSN)1521-4095
|
[17] |
Aveyard R, Binks B P, Clint J H . Emulsions stabilized solely by solid colloid particles[J]. Adv. Colloid Interface Sci., 2003, 100-102:503-546.
doi: 10.1016/S0001-8686(02)00069-6
|
[18] |
Binks B P, Rodrigue J A, Frith W J . Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J]. Langmuir, 2007,23:3626-3636.
doi: 10.1021/la0634600
pmid: 17316038
|
[19] |
Binks B P, Rodrigues J A . Double inversion of emulsions by using nanoparticles and a di-chain surfactant[J]. Angew. Chem. Int. Ed., 2007,46:5389-5392.
doi: 10.1002/anie.200700880
pmid: 17546717
|
[20] |
Cui Z G, Shi K Z, Cui Y Z , et al. Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate[J]. Colloids Surf. A, 2008,329:67-74.
doi: 10.1016/j.colsurfa.2008.06.049
|
[21] |
Cui Z G, Yang L L, Cui Y Z , et al. Effects of surfactant structure on the phase inversion of emulsions stabilized by mixtures of silica nanoparticles and cationic surfactant[J]. Langmuir, 2010,26:4717-4724.
doi: 10.1021/la903589e
pmid: 19950938
|
[22] |
Cui Z G, Cui C F, Zhu Y , et al. Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids[J]. Langmuir, 2012,28:314-320.
doi: 10.1021/la204021v
pmid: 22103933
|
[23] |
Cui Z G, Cui Y Z, Cui C F , et al. Aqueous foams stabilized by in situ surface activation of calcium carbonate nanoparticles via adsorption of anionic surfactant[J]. Langmuir, 2010,26:12567-12574.
doi: 10.1021/la1016559
pmid: 20608686
|
[24] |
Zhu Y, Jiang J, Liu K , et al. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant[J]. Langmuir, 2015,31:3301-3307.
doi: 10.1021/acs.langmuir.5b00295
pmid: 25736518
|
[25] |
Zhu Y, Pei X, Jiang J , et al. Responsive aqueous foams stabilized by silica nanoparticles hydrophobized in situ with a conventional surfactant[J]. Langmuir, 2015,31:12937-12943.
doi: 10.1021/acs.langmuir.5b03681
pmid: 26542227
|
[26] |
Xu M D, Zhang W Q, Pei X M , et al. CO2/N2 triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant[J]. RSC Advances, 2017,7:29742-29751.
doi: 10.1039/C7RA03722H
|
[27] |
Liu K H, Lin Q, Cui Z G , et al. pH-Responsive Pickering emulsions stabilized by silica nanoparticles in combination with N-dodecyl-β-aminopropionate[J]. Chemical Journal of Chinese Universities, 2017,38:85-93.
|
[28] |
Liu K H, Jiang J Z, Cui Z G , et al. pH-Responsive Pickering emulsions stabilized by silica nanoparticles in combination with a conventional zwitterionic surfactant[J]. Langmuir, 2017,33:2296-2305.
doi: 10.1021/acs.langmuir.6b04459
pmid: 28191963
|
[29] |
Zhu Y, Fu T, Liu K , et al. Thermo-responsive Pickering emulsions stabilized by silica nanoparticles in combination with alkyl polyoxyethylene Ether nonionic surfactant[J]. Langmuir, 2017,33:5724-5733.
doi: 10.1021/acs.langmuir.7b00273
pmid: 28510456
|
[30] |
Xu M D, Jiang J Z, Pei X M , et al. Novel oil-in-water emulsions stabilized by ionic surfactant and similarly charged nanoparticles at very low concentrations[J]. Angew. Chem. Int. Ed., 2018,130:7864-7868.
doi: 10.1002/ange.v130.26
|
[31] |
Xu M D, Xu L F, Lin Q , et al. Switchable oil-in-water emulsions stabilized by like-charged surfactant and particles at very low concentration[J]. Langmuir, 2019,35:4058-4067.
doi: 10.1021/acs.langmuir.8b04159
pmid: 30807183
|
[32] |
Xu M D . Study on the fluid-fluid dispersion systems stabilized by Al2O3 nanoparticles in combination with surfactants and their stimuli-responsive properties[D]. Wuxi: Jiangnan University, 2019.
|
[33] |
Rosen M J, Kunjappu J T . Surfactants and interfacial phenomena[M]. Hoboken: John Wiley & Sons, 2012.
|
[34] |
Tang Y L, Guan X H, Su T Z , et al. Fluoride adsorption onto activated alumina: Modeling the effects of pH and some competing ions[J]. Colloids Surf. A, 2009,337:33-38.
doi: 10.1016/j.colsurfa.2008.11.027
|
[35] |
Sharrad M O, Fan M . Adsorption of carbonate and bicarbonate on FeOOH[J]. Int. J. Adv. Technol. Eng. Sci., 2015,3:150-169.
doi: 10.1021/es4020597
pmid: 23885755
|
[36] |
Lin Q, Xu M D, Cui Z G , et al. Structure and stabilization mechanism of diesel oil-in-water emulsions stabilized solely by either positively or negatively charged nanoparticles[J]. Colloids Surf. A, 2019,573:30-39.
doi: 10.1007/s00249-019-01415-x
pmid: 31865397
|
[37] |
Schuster D. Encyclopedia of emulsion technology[M]. Vol. 4, New York: CRC Press, 1996.
|
[38] |
Tomlinson E, Davis S S, Mukhayer G I. Ionic interaction and phase stability, in solution chemistry of surfactants[M]. Vol. 1, ed. by Mittal K L, New York: Plenum Press, 1979.
|