China Surfactant Detergent & Cosmetics ›› 2022, Vol. 52 ›› Issue (9): 1011-1015.doi: 10.3969/j.issn.1001-1803.2022.09.014
• Reviews • Previous Articles Next Articles
Yan Yongli1,*(),Cai Yuxiu1,Dou Longlong2,Cao Yuxia2
Received:
2022-01-12
Revised:
2022-05-30
Online:
2022-09-22
Published:
2022-09-23
Contact:
Yongli Yan
E-mail:yylhill@163.com.
CLC Number:
Yan Yongli,Cai Yuxiu,Dou Longlong,Cao Yuxia. Research progress in the dynamics of liquid drainage from complex foam system[J].China Surfactant Detergent & Cosmetics, 2022, 52(9): 1011-1015.
[1] | Stevenson P. Foam engineering, fundamentals and applications[M]. Pondicherry: Wiley-Blackwell, 2012: 227-509. |
[2] |
Hill C, Eastoe J. Foams: From nature to industry[J]. Advances in Colloid and Interface Science, 2017, 247: 496-513.
doi: 10.1016/j.cis.2017.05.013 |
[3] |
Rio E, Drenckhan W, Salonen A D, et al. Unusually stable liquid foams[J]. Advances in Colloid and Interface Science, 2014, 205: 74-86.
doi: 10.1016/j.cis.2013.10.023 |
[4] |
Lee M, Lee E Y, Lee D, et al. Stabilization and fabrication of microbubbles: Applications for medical purposes and functional materials[J]. Soft Matter, 2015, 11: 2067-2079.
doi: 10.1039/C5SM00113G |
[5] |
Zhou J, Ranjith P G, Wanniarachchi W A M. Different strategies of foam stabilization in the use of foam as a fracturing fluid[J]. Advances in Colloid and Interface Science, 2020, 276: 102104.
doi: 10.1016/j.cis.2020.102104 |
[6] |
Friberg S E, Solans C. Surfactant association structures and the stability of emulsions and foams[J]. Langmuir, 1986, 2: 121-126.
doi: 10.1021/la00068a001 |
[7] |
Dickinson E. Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability[J]. Journal of Colloid and Interface Science, 2015, 449: 38-45.
doi: 10.1016/j.jcis.2014.09.080 pmid: 25446956 |
[8] |
Zhang Yusong, Liu Qi, Ye Hang, et al. Nanoparticles as foam stabilizer: Mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108561.
doi: 10.1016/j.petrol.2021.108561 |
[9] |
Langevin D. Aqueous foams: A field of investigation at the frontier between chemistry and physics[J]. ChemPhysChem, 2008, 9: 510-522.
doi: 10.1002/cphc.200700675 |
[10] |
Wang J, Nguyen A V, Farrokhpay S. A critical review of the growth, drainage and collapse of foams[J]. Advances in Colloid and Interface Science, 2016, 228: 55-70.
doi: 10.1016/j.cis.2015.11.009 |
[11] |
Jalmes A S. Physical chemistry in foam drainage and coarsening[J]. Soft Matter, 2006, 2: 836-849.
doi: 10.1039/b606780h |
[12] |
Addad S C, Höhler R, Pitois O. Flow in foams and flowing foams[J]. Annual Review of Fluid Mechanics, 2013, 45: 241-267.
doi: 10.1146/annurev-fluid-011212-140634 |
[13] |
Denkov N, Tcholakova S, Brinkova N P. Physicochemical control of foam properties[J]. Current Opinion in Colloid & Interface Science, 2020, 50: 101376.
doi: 10.1016/j.cocis.2020.08.001 |
[14] |
Sun Qicheng. Liquid foam drainage: an overview[J]. International Journal of Modern Physics B, 2008, 22: 2333-2354.
doi: 10.1142/S0217979208039514 |
[15] |
Giavazzi F, Trappe V, Erbino R. Multiple dynamic regimes in a coarsening foam[J]. Journal of Physics: Condensed Matter, 2021, 33: 24002.
doi: 10.1088/1361-648X/abb684 |
[16] |
Roberts K, Axberg C, Österlund R, et al. Liquid crystals as lamellar reservoirs reduce thinning by drainage[J]. Nature, 1975, 255: 53-54.
doi: 10.1038/255053a0 |
[17] | Bergeron V. Forces and structure in thin liquid soap films[J]. Journal of Physics: Condensed Matter, 1999, 11: 215-238. |
[18] |
Karakashev S I. Hydrodynamics of foams[J]. Experiments in Fluids, 2017, 58: 91.
doi: 10.1007/s00348-017-2332-z |
[19] | Weaire D, Hutzler S. The physics of foams[M]. Oxford: Oxford University Press, 1999: 126-143. |
[20] |
Verbist G, Weaire D, Kraynik A M. The foam drainage equation[J]. Journal of Physics: Condensed Matter, 1996, 8: 3715-3731.
doi: 10.1088/0953-8984/8/21/002 |
[21] | Hilgenfeldt S, Arif S, Tsai J C. Foam: A multiphase system with many facets[J]. Philosophical Transactions of the Royal Society A, 2008, 366: 2145-2159. |
[22] |
Koehler S A, Hilgenfeldt S, Stone H A. A generalized view of foam drainage: Experiment and theory[J]. Langmuir, 2000, 16: 6327-6341.
doi: 10.1021/la9913147 |
[23] | Yan Yongli, Qu Chengtun, Zhang Ningsheng, et al. A study on the kinetics of liquid drainage from colloidal gas aphrons (CGAs)[J]. Colloidsand Surfaces A: Physicochemicaland Engineering Aspects, 2005, 259: 167-172. |
[24] |
Chen Zonglin, Yan Yongli, Huang Xuebin. Stabilization of foams solely with polyoxyethylene-type nonionic surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331: 239-244.
doi: 10.1016/j.colsurfa.2008.08.011 |
[25] |
Horozov T S. Foams and foam films stabilized by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13: 134-140.
doi: 10.1016/j.cocis.2007.11.009 |
[26] |
Narsimhan G. Drainage of particle stabilized foam film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495: 20-29.
doi: 10.1016/j.colsurfa.2016.01.044 |
[27] |
Briceño-Ahumada Z, Soltero-Martínez J F A, Castillo R. Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review[J]. Chemical Engineering Journal Advances, 2021, 7: 100116.
doi: 10.1016/j.ceja.2021.100116 |
[28] |
Haffner B, Khidas Y, Pitois O. The drainage of foamy granular suspensions[J]. Journal of Colloid and Interface Science, 2015, 458: 200-208.
doi: 10.1016/j.jcis.2015.07.051 |
[29] |
Wang J, Nguyen A V. Foam drainage in the presence of solid particles[J]. Soft Matter, 2016, 12: 3004-3012.
doi: 10.1039/c6sm00028b pmid: 26877265 |
[30] |
Britan A, Liverts M, Ben-Dor G, et al. The effect of fine particles on the drainage and coarsening of foam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 344: 15-23.
doi: 10.1016/j.colsurfa.2009.03.011 |
[31] |
Denkov N D. Mechanisms of foam destruction by oil-based antifoams[J]. Langmuir, 2004, 20: 9463-9505.
doi: 10.1021/la049676o |
[32] |
Lee J, Nikolov A, Wasan D. Stability of aqueous foams in the presence of oil: On the importance of dispersed vs solubilized oil[J]. Industrial & Engineering Chemistry Research, 2013, 52: 66-72.
doi: 10.1021/ie301102m |
[33] |
Koursari N, Johnson P, Parsa M, et al. Modelling of foamed emulsion drainage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124915.
doi: 10.1016/j.colsurfa.2020.124915 |
[34] |
Salonen A, Lhermerout R, Rio E, et al. Dual gas and oil dispersions in water: production and stability of foamulsion[J]. Soft Matter, 2012, 8: 699-706.
doi: 10.1039/C1SM06537H |
[35] |
Schneider M, Zou Z, Langevin D, et al. Foamed emulsion drainage: Flow and trapping of drops[J]. Soft Matter, 2017, 13: 4132-4141.
doi: 10.1039/c7sm00506g pmid: 28555683 |
[36] |
Mensire R, Lorenceau E. Stable oil-laden foams: Formation and evolution[J]. Advances in Colloid and Interface Science, 2017, 247: 465-476.
doi: S0001-8686(17)30222-1 pmid: 28821347 |
[37] |
Yan Yongli, Shan Cheng, Wang Yao, et al. Effects of oil on aqueous foams: Electrical conductivity of foamed emulsions[J]. ChemPhysChem, 2014, 15: 3110-3115.
doi: 10.1002/cphc.201402219 pmid: 25056102 |
[38] | Stone H A, Koehler S A, Hilgenfeldt S, et al. Perspectives on foam drainage and the influence of interfacial rheology[J]. Journal of Physics: Condensed Matter, 2003, 15: 283-290. |
[39] |
Fameau A L, Salonen A. Effect of particles and aggregated structures on the foam stability and aging[J]. Comptes Rendus Physique, 2014, 15: 748-760.
doi: 10.1016/j.crhy.2014.09.009 |
[40] |
Behrens S H. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems[J]. Current Opinion in Colloid & Interface Science, 2020, 50: 101384.
doi: 10.1016/j.cocis.2020.08.009 |
[1] | Zhisheng Zhang, Chanliang Shen, Jianxun Li, Yanqiang Liu, Weiwei Han, Sanbao Dong. Preparation and performance of betaine/AOS/Gemini ternary surfactant foam for gas well deliquification [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 239-249. |
[2] | Guofeng Li, Kainan Liu, Wenlong Mo, Teng Ma. Performance evaluation of a system of imbibition oil displacement agent in shale reservoir [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 250-258. |
[3] | Hongmei Zhang, Yongmin Zhang. Synthesis and properties of a choline-fatty-acid-based ionic liquid surfactant [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 149-155. |
[4] | Xiaohong Pan, Ziqi Gao, Zhen Chen, Shuai Yin, Haiping Huang, Bin Hu. Discussion on the current situation of research and management on the stability of cosmetic products in China [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 201-208. |
[5] | Pei Liu, Ting Pan, Xiaomei Pei, Binglei Song, Jianzhong Jiang, Zhenggang Cui, Bernard P. Binks. Dual-responsive oil-in-water emulsions co-stabilized by a nonionic-anionic Bola surfactant and silica nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 1-15. |
[6] | Haokang Ai, Yajie Jiang, Yakui Wang, Lu Zhang, Tao Geng. Synthesis and properties of Gemini quaternary ammonium surfactant based on stearate [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 16-23. |
[7] | Wanping Zhang, Yanzhong Lin, Qianjie Zhang, Dongmei Zhang, Wen Jiang. Study on the phase behavior of sodium lauroyl methyltaurate mediated by Ca2+ [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 32-37. |
[8] | Yaru Wang, Tingyuan Mo, Hongxia Lai, Yue Zhou, Jiaying Xie, Jianhua Tan. Analysis of the causes of skin irritation of niacinamide cosmetics based on patch test and stability test [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 51-56. |
[9] | Chang Shiteng, Cai Xiaojun, Zheng Yancheng, Liu Xuejin, Yi Xiao, Jiang Zhuyang. Physicochemical properties of ethoxylated sulfosuccinate surfactants and their interfacial properties when mixed with a betaine surfactant [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 989-998. |
[10] | Xu Derong,Lian Wei,Xiong Jinzhao,Kang Wanli. Research on the influence factors of surfactant imbibition in tight reservoirs [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 857-864. |
[11] | Niu Qiqi,Lv Qichao,Dong Zhaoxia,Zhang Fengfan,Wang Hongbo. Research progress on the properties of foam systems containing wormlike micelles [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 915-924. |
[12] | Wang Jiarui,Wei Xiaocheng,Zhang Chunxue,Chen Peizhen,Zheng Xiangqun,Wang Qiang. Research progress on detection methods of surfactants in water samples from environment [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 925-934. |
[13] | Qiang Xuefeng, Zhang Li, Zheng Bin, Hou Qianqian, Yan Kun. Study on the inf luence of KCl on the evolution of foam of an anionic surfactant [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 733-741. |
[14] | Xing Huanyu, Jia Lihua, Zhao Zhenlong, Yang Rui, Guo Xiangfeng. Synthesis and properties of novel surfactants containing naphthalimide and alkyl segments [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 742-747. |
[15] | Wang Huazheng, Zhang Liang, Kang Xin, Kang Wanli, Li Zhe, Yang Hongbin. Effect of CO2 on physical properties of produced oil and water in Changqing and emulsion stabilization mechanism [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 617-624. |
|