[1] |
Neumann S M, van der Schaaf U S, Karbstein H P. Investigations on the relationship between interfacial and single droplet experiments to describe instability mechanisms in double emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553:464-471.
doi: 10.1016/j.colsurfa.2018.05.087
|
[2] |
Tanana W, Panichpakdee J, Saengsuwana S. Novel biodegradable hydrogel based on natural polymers: Synjournal, characterization, swelling/reswelling and biodegradability[J]. European Polymer Journal, 2019, 112:678-687.
doi: 10.1016/j.eurpolymj.2018.10.033
|
[3] |
Salem D M S A, Sallam M A E, Youssef T N M A. Synjournal of compounds having antimicrobial activity from alginate[J]. Bioorganic Chemistry, 2019, 87:103-111.
doi: 10.1016/j.bioorg.2019.03.013
|
[4] |
Balanc B, Trifkovic K, Dordevic V, et al. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes[J]. Food Hydrocolloids, 2016, 132(3): 1221-1229.
|
[5] |
Sun R, Xia Q. In vitro digestion behavior of (W1/O/W2) double emulsions incorporated in alginate hydrogel beads: Microstructure, lipolysis, and release[J]. Food Hydrocolloids, 2020, 107:105950.
doi: 10.1016/j.foodhyd.2020.105950
|
[6] |
Lee B B, Ravindra P, Chan E S. Size and shape of calcium alginate beads produced by extrusion dripping[J]. Chemical Engineering & Technology, 2013, 36(10): 1627-1642.
|
[7] |
Muschiolik G, Dickinson E. Double emulsions relevant to food systems: Preparation, stability, and applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(3): 532-555.
doi: 10.1111/crf3.2017.16.issue-3
|
[8] |
Tamnak S, Mirhosseini H, Tan C P, et al. Encapsulation properties, release behavior and physicochemical characteristics of water-in-oil-in-water (W/O/W) emulsion stabilized with pectin-pea protein isolate conjugate and Tween 80[J]. Food Hydrocolloids, 2016, 61:599-608.
doi: 10.1016/j.foodhyd.2016.06.023
|
[9] |
Gharehbeglou P, Jafari S M, Homayouni A, et al. Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate[J]. Food Hydrocolloids, 2019, 89:44-55.
doi: 10.1016/j.foodhyd.2018.10.020
|
[10] |
Zhang Z, Zou L, Zhang R, et al. Encapsulation of protein nanoparticles within alginatemicroparticles: Impact of pH and ionic strength on functional performance[J]. Journal of Food Engineering, 2016, 178:81-89.
doi: 10.1016/j.jfoodeng.2016.01.010
|
[11] |
Minekus M, Alminger M, Alvito P, et al. A standardised static in vitro digestion method suitable for food-an international consensus[J]. Food & Function, 2014, 5:1113-1124.
|
[12] |
Li J L, Hwang I C, Chen X G, et al. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility[J]. Food Hydrocolloids, 2016, 60:138-147.
doi: 10.1016/j.foodhyd.2016.03.016
|
[13] |
Wang Q, Zhang J, Wang A. Preparation and characterization of a novel pH sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium[J]. Carbohydrate Polymers, 2009, 78:731-737.
doi: 10.1016/j.carbpol.2009.06.010
|
[14] |
Ching S H, Bansal N, Bhandari B. Alginate gel particles-A review of production techniques and physical properties[J]. Critical Reviews in Food Science and Nutrition, 2017, 57:1133-1152.
doi: 10.1080/10408398.2014.965773
pmid: 25976619
|
[15] |
Abdolmaleki K, Mohammadifar M A, Mohammadi R, et al. The effect of pH and salt on the stability and physicochemical properties of oil-in-water emulsions prepared with gum tragacanth[J]. Carbohydrate Polymers, 2016, 140:342-348.
doi: 10.1016/j.carbpol.2015.12.081
pmid: 26876860
|
[16] |
Mcclements D J, Decker E A. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems[J]. Journal of Food Science, 2000, 65(8): 1270-1282.
doi: 10.1111/jfds.2000.65.issue-8
|
[17] |
Qian C, Decker E A, Xiao H, et al. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type[J]. Food Chemistry, 2012, 132(3): 1221-1229.
doi: 10.1016/j.foodchem.2011.11.091
|
[18] |
Singh H, Ye A, Horne D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion[J]. Progress in Lipid Research, 2009, 48:92-100.
doi: 10.1016/j.plipres.2008.12.001
|
[19] |
Li Y, Hu M, Yumin D, et al. Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads[J]. Food Hydrocolloids, 2011, 25:122-130.
doi: 10.1016/j.foodhyd.2010.06.003
|
[20] |
Devraj R, Williams H D, Warren D B, et al. In vitro digestion testing of lipid-based delivery systems: Calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products[J]. International Journal of Pharmaceutics, 2013, 441:323-333.
doi: 10.1016/j.ijpharm.2012.11.024
pmid: 23178598
|