[1] |
Friehs E, Alsalka Y, Jonczyk R, et al. Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016,29:1-28.
|
[2] |
Prajitha N, Athira S S, Mohanan P V. Bio-interactions and risks of engineered nanoparticles[J]. Environmental Research, 2019,172:98-108.
pmid: 30782540
|
[3] |
Onoue S, Seto Y, Sato H, et al. Chemical photoallergy: Photobiochemical mechanisms, classification, and risk assessments[J]. Journal of Dermatological Science, 2017,85(1) : 4-11.
pmid: 27528585
|
[4] |
OECD. OECD Guidelines for the Testing of Chemicals Test No. 432: In Vitro 3T3 NRU Phototoxicity Test[S]. Pairs: OECD, 2010: 1-15.
|
[5] |
China Food and Drug Administration. CFDA’s notice on incorporating 3T3 neutral red uptake phototoxicity test method into safety and technical standards for cosmetics (2015) [EB/OL]. (2016-11-11) [2020-04-17]. http://www.sda.gov.cn/WS01/CL0087/166246.html.
|
[6] |
SCCS . Guidance on the safety assessment of nanomaterials in cosmetics (2019) [EB/OL]. (2019-10-30) [2020-04-17]. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_233.pdf
|
[7] |
Cai Rui, He Wendan, Tang Ying, et al. Progress with respect to safety evaluation methods for cosmetic photoirritation and photoallergy[J]. China Surfactant Detergent & Cosmetics, 2017,47(10) : 588-592.
|
[8] |
Yin J J, Liu J, Ehrenshaft M, et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes: Generation of reactive oxygen species and cell damage[J]. Toxicology and Applied Pharmacology, 2012,263(1) : 81-88.
|
[9] |
Xue C, Wu J, Lan F, et al. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation[J]. Journal of Nanoscience and Nanotechnology, 2010,10(12) : 8500-8507.
pmid: 21121359
|
[10] |
Oguma J, Kakuma Y, Murayama S, et al. Effects of silica coating on photocatalytic reactions of anatase titanium dioxide studied by quantitative detection of reactive oxygen species[J]. Applied Catalysis B: Environmental, 2013,129(17) : 282-286.
|
[11] |
Qin Yao, Ke Yihui, Xu Hongjing, et al. Application of chicken chorioallantoic membrane model in toxicity and efficacy assessment of cosmetics[J]. Detergent & Cosmetics, 2016,39(7) : 15-20, 28.
|
[12] |
Neumann N J, Hölzle E, Lehmann P, et al. Photo hen’s egg test: a model for phototoxicity[J]. British Journal of Dermatology, 1997,136(3) : 326-330.
|
[13] |
Neumann N J, Blotz A, Wasinska-Kempka G, et al. Evaluation of phototoxic and photoallergic potentials of 13 compounds by different in vitro and in vivo methods[J]. Journal of Photochemistry & Photobiology B: Biology, 2005,79(1) : 25-34.
|
[14] |
Nathalie D, Yannick G, Caroline B, et al. Assessment of the phototoxic hazard of some essential oils using modified 3T3 neutral red uptake assay[J]. Toxicology in Vitro, 2006,20(4) : 480-489.
pmid: 16219446
|
[15] |
Ying T, Rui C, Ding C, et al. Photocatalytic production of hydroxyl radicals by commercial TiO2 nanoparticles and phototoxic hazard identification[J]. Toxicology, 2018,406:1-8.
pmid: 29772259
|
[16] |
Spielmann H, Balls M, Dupuis H, et al. The international EU/COLIPA in vitro phototoxicity validation study: Results of phase II (Blind Trial). Part 1: The 3T3 NRU Phototoxicity Test[J]. Toxicology in Vitro, 1998,12(3) : 305-327.
pmid: 20654413
|
[17] |
Torinuki W, Tagami H. Role of complement in chlorpromazine-induced phototoxicity[J]. Journal of Investigative Dermatology, 1986,86(2) : 142-144.
|
[18] |
Forbes P D, Urbach F, Davies R E. Phototoxicity testing of fragrance raw materials[J]. Food and Cosmetic Toxicology, 1977,15(1) : 55-60.
|
[19] |
Damien Lelièvre, Justine P, Christiaens F, et al. The episkin phototoxicity assay (EPA): Development of an in vitro tiered strategy using 17 reference chemicals to predict phototoxic potency[J]. Toxicology in Vitro, 2007,21(6) : 977-995.
pmid: 17604947
|
[20] |
Onoue S, Suzuki G, Kato M, et al. Non-animal photosafety assessment approaches for cosmetics based on the photochemical and photobiochemical properties[J]. Toxicology in Vitro, 2013,27(8) : 2316-2324.
pmid: 24134854
|
[21] |
Sanders K, Deng L L, Mundy W R, et al. In vitro phototoxicity and hazard identification of nano-scale titanium dioxide[J]. Toxicology and Applied Pharmacology, 2012,258(2) : 226-236.
doi: 10.1016/j.taap.2011.10.023
pmid: 22115978
|
[22] |
Faria M, Navas M J, Soares A M, et al. Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos[J]. Science of the Total Environment, 2014, 470-471:379-389.
|
[23] |
Wyrwoll A J, Lautenschlager P, Bach A, et al. Size matters: The phototoxicity of TiO2 nanomaterials[J]. Environmental Pollution, 2016,208(Part B):859-867.
|
[24] |
Jones M C, Jones S A, Riffo-Vasquez Y, et al. Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility[J]. Journal of Controlled Release, 2014,183:94-104.
doi: 10.1016/j.jconrel.2014.03.022
pmid: 24657808
|
[25] |
Ortellis S, Costa A L, Matteucci P, et al. Silica modification of titania nanoparticles enhances photocatalytic production of reactive oxygen species without increasing toxicity potential in vitro[J]. RSC Advances, 2018,8(70) : 40369-40377.
|