[1] |
Karakashev S I, Grozdanova M V. Foams and antifoams[J]. Advances in Colloid and Interface Science, 2012, 176- 177 (8) : 1-17.
|
[2] |
Pugh R J. Foaming, foam films, antifoaming and defoaming[J]. Advances in Colloid and Interface Science, 1996, 64: 67-142.
doi: 10.1016/0001-8686(95)00280-4
|
[3] |
Acharya D P, Gutiérrez J M, Aramaki K, et al. Interfacial properties and foam stability effect of novel gemini-type surfactants in aqueous solutions[J]. Journal of Colloid and Interface Science, 2005, 291 (1) : 236-243.
pmid: 16154135
|
[4] |
Koczó K, Rácz G. Foaming properties of surfactant solutions[J]. Colloids and Surfaces, 1991, 56: 59-82.
doi: 10.1016/0166-6622(91)80114-4
|
[5] |
Goff H D. Formation and stabilisation of structure in ice-cream and related products[J]. Current Opinion in Colloid & Interface Science, 2002, 7 (5) : 432-437.
doi: 10.1016/S1359-0294(02)00076-6
|
[6] |
Wu C, Wang Z, Zhi Z, et al. Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs[J]. International Journal of Pharmaceutics, 2011, 403 (1) : 162-169.
doi: 10.1016/j.ijpharm.2010.09.040
|
[7] |
Hill C, Eastoe J. Foams: from nature to industry[J]. Advances in Colloid and Interface Science, 2017, 247: 496-513.
doi: S0001-8686(16)30299-8
pmid: 28535903
|
[8] |
Kumar S, Mandal A. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery[J]. Applied Surface Science, 2017, 420: 9-20.
doi: 10.1016/j.apsusc.2017.05.126
|
[9] |
Koehler S A, Hilgenfeldt S, Weeks E R, et al. Foam drainage on the microscale Ⅱ. Imaging flow through single Plateau borders[J]. Journal of Colloid and Interface Science, 2004, 276 (2) : 439-449.
pmid: 15271572
|
[10] |
Wang J, Nguyen A V, Farrokhpay S. A critical review of the growth, drainage and collapse of foams[J]. Advances in Colloid and Interface Science, 2016, 228: 55-70.
doi: 10.1016/j.cis.2015.11.009
pmid: 26718078
|
[11] |
Langevin D. Bubble coalescence in pure liquids and in surfactant solutions[J]. Current Opinion in Colloid & Interface Science, 2015, 20 (2) : 92-97.
doi: 10.1016/j.cocis.2015.03.005
|
[12] |
Bhakta A, Ruckenstein E. Decay of standing foams: drainage, coalescence and collapse[J]. Advances in Colloid and Interface Science, 1997, 70: 1-124.
doi: 10.1016/S0001-8686(97)00031-6
|
[13] |
Briceño-Ahumada Z, Langevin D. On the influence of surfactant on the coarsening of aqueous foams[J]. Advances in Colloid and Interface Science, 2017, 244: 124-131.
doi: S0001-8686(15)00196-7
pmid: 26687804
|
[14] |
Liu Xufeng. Application of surfactant in textile industry[J]. China Surfactant Detergent & Cosmetics, 2006 (2) : 99-102.
|
[15] |
Zhang Biao, Fan Weili. Progress in the application of surfactants in household detergents[J]. Applied Chemical Industry, 2008 (2) : 205-210.
|
[16] |
Wang Yanling, Zheng Jingjing, Zhao Xiutai, et al. Study on foam properties of sulfobetaine fluorocarbon surfactants[J]. Bulletin of the Chinese Ceramic Society, 2010, 29 (2) : 314-318.
|
[17] |
Kumar M K, Mitra T, Ghosh P. Adsorption of ionic surfactants at liquid-liquid interfaces in the presence of salt: application in binary coalescence of drops[J]. Industrial & Engineering Chemistry Research, 2006, 45 (21) : 7135-7143.
doi: 10.1021/ie0604066
|
[18] |
Zhang Y, Liu Q, Ye H, et al. Nanoparticles as foam stabilizer: mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 202 (8) : 108561.
|
[19] |
Ma Di. Preparation of polymer foam stabilizer based on acrylamide and evaluation of foam system[D]. Fushun: Liaoning Shihua University, 2020.
|
[20] |
Wang Cuihua, Pan Zhihua. Synthesis and foam stability of protein foaming agents[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2006, 8 (4) : 92-96.
|
[21] |
Binks B P, Duncumb B, Murakami R. Effect of pH and salt concentration on the phase inversion of particle-stabilized foams[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2007, 23 (18) : 9143-9146.
doi: 10.1021/la701393w
|
[22] |
Warszynski P, Lunkenheimer K, Czichocki G. Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces[J]. 2002, 18 (7) : 2506-2514.
|
[23] |
He Guoxu, Sun Haojie, Zan Hontao, et al. Effect of inorganic salt on surface tension of SDS solution[J]. Chemical Industry Times, 2008 (10) : 42-44.
|
[24] |
Jiang N, Yu X, Sheng Y, et al. Role of salts in performance of foam stabilized with sodium dodecyl sulfate[J]. Chemical Engineering Science, 2020, 216 (1) : 115474.
|
[25] |
Stoyan, Ivanov, Karakashev, et al. Frothing behavior of nonionic surfactant solutions in the presence of organic and inorganic electrolytes[J]. 2001, 235 (1) : 194-196.
|
[26] |
Obisesan O, Ahmed R, Amani M. The effect of salt on stability of aqueous foams[J]. Energies, 2021, 14 (2) : 279.
doi: 10.3390/en14020279
|
[27] |
Yang W, Yang X. Molecular dynamics study of the influence of calcium ions on foam stability[J]. The Journal of Physical Chemistry B, 2010, 114 (31) : 10066-10074.
doi: 10.1021/jp1022828
|
[28] |
Binks B P, Shi H. Aqueous foams in the presence of surfactant crystals[J]. Langmuir, 2020, 36 (4) : 991-1002.
doi: 10.1021/acs.langmuir.9b03862
pmid: 31985231
|
[29] |
Zhang L, Tian L, Du H, et al. Foams stabilized by surfactant precipitates: criteria for ultrastability[J]. Langmuir, 2017, 33 (29) : 7305-7311.
doi: 10.1021/acs.langmuir.7b01962
pmid: 28669193
|
[30] |
Zhang L, Mikhailovskaya A, Yazhgur P, et al. Precipitating sodium dodecyl sulfate to create ultrastable and stimulable foams[J]. Angewandte Chemie-International Edition, 2015, 54 (33) : 9533-9536.
doi: 10.1002/anie.v54.33
|
[31] |
Zhang L, Wang H T, Zheng B, et al. Surfactant crystals as stimulable foam stabilizers: tuning stability with counterions[J]. Journal of Surfactants and Detergents, 2019, 22 (5) : 1237-1245.
doi: 10.1002/jsde.12330
|