[1] |
Wang M, Wang Y. Development of surfactant coacervation in aqueous solution[J]. Soft Matter, 2014, 10 (40) : 7909-7919.
doi: 10.1039/c4sm01386g
pmid: 25144160
|
[2] |
Zhou L, Shi H, Li Z, et al. Recent advances in complex coacervation design from macromolecular assemblies and emerging applications[J]. Macromolecular Rapid Communications, 2020, 41 (21) : 2000149.
|
[3] |
Yuan C, Levin A, Chen W, et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid-liquid phase separation[J]. Angewandte Chemie International Edition, 2019, 58 (50) : 18116-18123.
|
[4] |
Pérez-Calderón J, Santos M V, Zaritzky N. Reactive RED 195 dye removal using chitosan coacervated particles as bio-sorbent: analysis of kinetics, equilibrium and adsorption mechanisms[J]. Journal of Environmental Chemical Engineering, 2018, 6 (5) : 6749-6760.
|
[5] |
Linder M B, Qiao M Q, Laumen F, et al. Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems[J]. Biochemistry, 2004, 43 (37) : 11873-11882.
pmid: 15362873
|
[6] |
Comunian T A, Thomazini M, Alves A J G, et al. Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release[J]. Food Research International, 2013, 52 (1) : 373-379.
|
[7] |
Abbas M, Lipiński W P, Wang J, et al. Peptide-based coacervates as biomimetic protocells[J]. Chemical Society Reviews, 2021, 50 (6) : 3690-3705.
doi: 10.1039/d0cs00307g
pmid: 33616129
|
[8] |
Bao Y, Chen H, Xu Z, et al. Photo-responsive phase-separating fluorescent molecules for intracellular protein delivery[J]. Angewandte Chemie International Edition, 2023, 62 (42) : e2023070.
|
[9] |
Zhao W, Wang Y. Coacervation with surfactants: from single-chain surfactants to gemini surfactants[J]. Advances in Colloid and Interface Science, 2017, 239: 199-212.
doi: S0001-8686(16)30033-1
pmid: 27260407
|
[10] |
Zhao W, Wang Y. Development of surfactant application in wastewater treatment[J]. Acta Chimica Sinica, 2019, 77 (8) : 717-728.
doi: 10.6023/A19050185
|
[11] |
Melnyk A, Namieśnik J, Wolska L. Theory and recent applications of coacervate-based extraction techniques[J]. TrAC Trends in Analytical Chemistry, 2015, 71: 282-292.
|
[12] |
Zhao W, Wang H, Wang Y. Coacervation of dynamic covalent surfactants with polyacrylamides: properties and applications[J]. Soft Matter, 2018, 14 (20) : 4178-4184.
doi: 10.1039/c8sm00773j
pmid: 29740650
|
[13] |
Zhang Z, Liu Q, Sun Z, et al. Poly-lipoic ester-based coacervates for the efficient removal of organic pollutants from water and increased point-of-use versatility[J]. Chemistry of Materials, 2019, 31 (12) : 4405-4417.
doi: 10.1021/acs.chemmater.9b00725
|
[14] |
Kukusamude C, Quirino J P, Srijaranai S. A coacervative extraction based on single-chain and double-chain cationic surfactants[J]. Journal of Chromatography A, 2016, 1472: 10-15.
doi: S0021-9673(16)31377-2
pmid: 27776773
|
[15] |
Quina F H, Hinze W L. Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach[J]. Industrial & Engineering Chemistry Research, 1999, 38 (11) : 4150-4168.
|
[16] |
Yazdi A S. Surfactant-based extraction methods[J]. TrAC Trends in Analytical Chemistry, 2011, 30 (6) : 918-929.
|
[17] |
Liu B, Zhao W, Shen Y, et al. Trimeric cationic surfactant coacervation as a versatile approach for removing organic pollutants[J]. Langmuir, 2021, 37 (19) : 5993-6001.
doi: 10.1021/acs.langmuir.1c00557
pmid: 33956450
|
[18] |
Ballesteros-Gómez A, Caballero-Casero N, García-Fonseca S, et al. Multifunctional vesicular coacervates as engineered supramolecular solvents for wastewater treatment[J]. Chemosphere, 2019, 223: 569-576.
doi: S0045-6535(19)30311-X
pmid: 30797166
|
[19] |
Sing C E. Development of the modern theory of polymeric complex coacervation[J]. Advances in Colloid and Interface Science, 2017, 239: 2-16.
doi: S0001-8686(16)30049-5
pmid: 27161661
|
[20] |
Weschayanwiwat P, Kunanupap O, Scamehorn J F. Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures[J]. Chemosphere, 2008, 72 (7) : 1043-1048.
doi: 10.1016/j.chemosphere.2008.03.065
pmid: 18514760
|
[21] |
Chen D, Zhang P, Li Y, et al. Hexafluoroisopropanol-induced coacervation in aqueous mixed systems of cationic and anionic surfactants for the extraction of sulfonamides in water samples[J]. Analytical and Bioanalytical Chemistry, 2014, 406 (24) : 6051-6060.
doi: 10.1007/s00216-014-8031-1
pmid: 25069882
|
[22] |
Menger F M, Peresypkin A V. A combinatorially-derived structural phase diagram for 42 zwitterionic geminis[J]. Journal of the American Chemical Society, 2001, 123 (23) : 5614-5615.
pmid: 11389660
|
[23] |
Danino D, Talmon Y, Levy H, et al. Branched threadlike micelles in an aqueous solution of a trimeric surfactant[J]. Science, 1995, 269 (5229) : 1420-1421.
pmid: 17731153
|
[24] |
Hou Y, Han Y, Deng M, et al. Aggregation behavior of a tetrameric cationic surfactant in aqueous solution[J]. Langmuir, 2010, 26 (1) : 28-33.
doi: 10.1021/la903672r
pmid: 19947615
|
[25] |
Fan Y, Wang Y. Self-assembly and functions of star-shaped oligomeric surfactants[J]. Langmuir, 2018, 34 (38) : 11220-11241.
doi: 10.1021/acs.langmuir.8b00290
pmid: 29616549
|
[26] |
Liu B, Fan Y, Li H, et al. Control the entire journey of pesticide application on superhydrophobic plant surface by dynamic covalent trimeric surfactant coacervation[J]. Advanced Functional Materials, 2021, 31 (5) : 2006606.
|
[27] |
Wang R, Tian M, Wang Y. Coacervation and aggregate transitions of a cationic ammonium gemini surfactant with sodium benzoate in aqueous solution[J]. Soft Matter, 2014, 10 (11) : 1705.
|
[28] |
Jendric M, Filipović Vinceković N, Vinceković M, et al. Phase behavior of bis (quaternary ammonium bromide)/sodium cholate/H2O system[J]. Journal of Dispersion Science and Technology, 2005, 26 (1) : 39-51.
|
[29] |
Pierce J. Colour in textile effluents-the origins of the problem[J]. Journal of the Society of Dyers and Colourists, 1994, 110 (4) : 131-133.
|
[30] |
Laing I G. The impact of effluent regulations on the dyeing industry[J]. Review of Progress in Coloration and Related Topics, 1991, 21 (1) : 56-71.
|