[1] |
Yang M, Mao X, Liu N, et al. Purification and characterization of two agarases from Agarivorans albus OAY02[J]. Process Biochemistry, 2014, 49 (5) : 905-912.
doi: 10.1016/j.procbio.2014.02.015
|
[2] |
Flament D, Barbeyron T, Jam M, et al. Alpha-agarases define a new family of glycoside hydrolases, distinct from β-agarase families[J]. Applied and Environmental Microbiology, 2007, 73 (14) : 4691-4694.
pmid: 17513582
|
[3] |
Mei J, Tang Z, Yi Y, et al. Purification and characterization of β-agarase from Paenibacillus sp. [J]. Food Science and Biotechnology, 2014, 23 (5) : 1605-1609.
doi: 10.1007/s10068-014-0218-x
|
[4] |
Wang Z, Liu X, Xie H, et al. Antioxidant activity and functional properties of Alcalase-hydrolyzed scallop protein hydrolysate and its role in the inhibition of cytotoxicity in vitro[J]. Food Chemistry, 2020, 344: 128566.
doi: 10.1016/j.foodchem.2020.128566
|
[5] |
Roseline, Leema T, Sachindra M N. Purification and characterization of agarase from marine bacteria Acinetobacter sp. PS12B and its use for preparing bioactive hydrolysate from agarophyte red seaweed gracilaria verrucosa[J]. Applied Biochemistry & Biotechnology, 2018, 186 (1) : 66-84.
|
[6] |
Wang J, Mou H, Jiang X, et al. Characterization of a novel β-agarase from marine Alteromonas sp. SY37-12 and its degrading products[J]. Applied Microbiology and Biotechnology, 2006, 71 (6) : 833-839.
doi: 10.1007/s00253-005-0207-3
|
[7] |
Cui X, Jiang Y, Chang L, et al. Heterologous expression of an agarase gene in Bacillus subtilis, and characterization of the agarose[J]. International Journal of Biological Macromolecules, 2018, 120: 657-664.
doi: 10.1016/j.ijbiomac.2018.07.118
|
[8] |
Araki T, Hayakawa M, Lu Z, et al. Purification and characterization of agarases from a marine bacterium Vibrio sp. PO-303[J]. Journal of Marine Biotechnology, 1998, 6 (4) : 260-265.
pmid: 9852623
|
[9] |
Zhao L, Yang H, Zhang R, et al. Screening and identification of microRNAs from plasma-derived extracellular vesicles (EVs) of Dazu black goat (Capra hircus) in early pregnant stages[J]. Gene, 2021, 790: 145706.
doi: 10.1016/j.gene.2021.145706
|
[10] |
Lakshmikanth M, Manohar S, Souche Y, et al. Extracellular β-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soilbacterium, Acinetobacter sp. AG LSL-1[J]. World Journal of Microbiology and Biotechnology, 2006, 22 (10) : 1087-1094.
doi: 10.1007/s11274-006-9147-z
|
[11] |
Ohta Y, Hatada Y, Ito S, et al. High-level expression of a neoagarobiose-producing β-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme[J]. Biotechnology and Applied Biochemistry, 2005, 41 (2) : 183-191.
doi: 10.1042/BA20040083
|
[12] |
Li H X, Liang J M, Rong L I, et al. Study on antioxidant activity of agar-oligosaccharide[J]. Guangzhou Chemical Industry, 2018, 11 (2) : 15-16.
|
[13] |
Jxa B, Zca B, Wza B, et al. Characterizing of a new α-agarase from Thalassomonas sp. LD5 and probing its catalytically essential residues[J]. International Journal of Biological Macromolecules, 2021, 194: 50-57.
doi: 10.1016/j.ijbiomac.2021.11.194
|
[14] |
Tiwari A, Mahadik K R, Gabhe S Y, et al. Piperine: a comprehensive review of mrthods of isolation, purification and biological properties[J]. Acta Pharmacological Sinica, 2021, 71 (2) : 185-213.
|
[15] |
Ji H L, Gao X, Wu W X, et al. Isolation of xylanase producing strains, optimization of fermentation conditions and research on enzymatic properties[J]. Journal of Biology and Life Science, 2021.
|
[16] |
Sun T, Yan P, Zhan N, et al. The optimization of fermentation conditions for Pichia pastoris GS115 producing recombinant xylanase[J]. Engineering in Life Sciences, 2020, 20 (5-6) : 216-228.
doi: 10.1002/elsc.201900116
|
[17] |
Zhang R, Zhang S, Jiang G, et al. Optimization of fermentation conditions, purification and rheological properties of poly (γ-glutamic acid) produced by Bacillus subtilis 1006-3[J]. Preparative Biochemistry & Biotechnology, 2022, 52 (3) : 302-310.
|
[18] |
Su Q, Jin T, Yu Y, et al. Extracellular expression of a novel β-agarase from Microbulbifer sp. Q7, isolated from the gut of sea cucumber[J]. AMB Express, 2017, 7 (1) : 1-9.
doi: 10.1186/s13568-016-0313-x
|
[19] |
Zhu Y, Gao H, Li H, et al. Overexpression and characterization of a thermostable β-agarase producing neoagarotetraose from a marine isolate Microbulbifer sp. AG1[J]. Acta Oceanologica Sinica, 2019, 38 (2) : 96-106.
|
[20] |
Ma J, Yan Q, Yi P, et al. Biochemical characterization of a truncated β-agarase from Microbulbifer sp. suitable for efficient production of neoagarotetraose[J]. Process Biochemistry, 2019, 87: 119-127.
doi: 10.1016/j.procbio.2019.08.021
|
[21] |
Li R K, Chen Z, Ying X J, et al. A novel GH 16 β-agarase isolated from a marine bacterium, Microbulbifer sp. BN3 and its characterization and high-level expression in Pichia pastoris[J]. International Journal of Biological Macromolecules, 2018, 119: 1164-1170.
doi: 10.1016/j.ijbiomac.2018.08.053
|
[22] |
Pan S Y. Screening a strain of Klebsiella sp. O852 and the optimization of fermentation conditions for trans-dihydrocarvone production[J]. Molecules, 2021, 26 (9) : 24-32.
doi: 10.3390/molecules26010024
|