China Surfactant Detergent & Cosmetics ›› 2019, Vol. 49 ›› Issue (4): 253-258.doi: 10.3969/j.issn.1001-1803.2019.04.010
• Reviews • Previous Articles Next Articles
ZHAO Si-qi1,2,MENG Hong1,2,YI Fan1,2()
Received:
2019-01-20
Revised:
2019-03-27
Online:
2019-04-22
Published:
2019-04-24
Contact:
Fan YI
E-mail:fantasyee@btbu. edu. cn
CLC Number:
ZHAO Si-qi,MENG Hong,YI Fan. Recommendation of computer-aided drug design for the screening of cosmetic plant source efficacy materials[J].China Surfactant Detergent & Cosmetics, 2019, 49(4): 253-258.
Tab.1
Database of common natural compound around the world"
数据库 | 开发单位 | 网址 | 简介 | 参考文献 |
---|---|---|---|---|
Chem-TCM | Institute of Pharmaceutical Science at Kings College,英国 | www.chemtcm.com | 包含350多种中药及9 500多种化合物。记录其化合物相关植物、化学性质、常见靶标活性预测等信息 | [6] |
CHMIS-C(A Comprehensive Herbal Medicine Information System for Cancer) | University of Michigan Medical School,美国 | www.sw16.im.med.umich.edu/chmis-c | 提供了527种用于临床上治疗不同类型癌症的抗癌草药处方、937种成分及9 366种小分子结构。并构建了参考文献和分子靶标辅助数据库 | [7] |
CNPD(Chinese Nature Products Database)[ | 创腾科技有限公司/中国科学院上海药物研究所 | www.neotrident.com/product/detail.aspx?id=16 | CNPD数据库目前共收集了37个类别的57 000多种天然产物,其中70%的分子是类药性分子,相关的数据包括天然产物的CAS登录号,名称,分子式,分子量,熔点等理化性质,以及二维及三维分子结构,生物活性,自然来源和参考文献信息 | [7] |
KEGG Compound Database | 日本京都大学生物信息学中心 | www.genome.jp/kegg/compound | 包含KEGG数据库中17 000多种代谢物及其他小分子化合物的名称、分子式、分子量、结构式、CAS号及其对应到的化学反应或代谢途径等信息 | [8] |
NAPRALERT(Natural Products Alert)[ | College of PharmacyUniversity of Illinois at Chicago,美国 | www.napralert.org | 根据超过200 000份文献记载构建的天然产物关系数据库,包括药物的药理学、生化信息及在各项实验(体内、体外、临床等)中的数据 | [9] |
TCM Database@Taiwan[ | 中国医药大学计算与系统生物学实验室,台湾 | www.tcm.cmu.edu.tw | 包括443种中药及20 000种成分,提供各项理化性质及3D结构。能够提供每一种中药完整的化合物内容及相关参考文献 | [10] |
TCMID(Traditional Chinese Medicine Integrated Database | 华东师范大学生命科学院 | www.megabionet.org/tcmid | 提供中医所有方面的信息,包括配方,草药和草药成分。同时收集了现代药理学和生物医学科学深入研究的药物的信息 | [11] |
TCMSP(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) | 西北农林科技大学计算系统生物学实验室 | www.lsp.nwsuaf.edu.cn/tcmsp.php | 包含了499种常见药用植物中所含的一共29 384种化合物结构。该数据库包括化学结构、口服利用度、药物相似性、水溶性等药代动力学性质及所对应的药物-靶标-疾病网络信息 | [12] |
ZINC | University of California,美国 | www.zinc.docking.org | 免费的化合物虚拟筛选数据库。包括了超过35 000 000种可购买到的化合物3D结构以供对接 | [13] |
国家化合物样品库 (Chinese National Compound Library) | 国家新药筛选中心、中国科学院上海药物研究所 | www.app.cncl.org.cn | 由核心库和卫星库构成的实体小分子化合物样品库。包含接近2 000 000种小分子的各项理化信息 | [6] |
中国天然产物化 学成分库 | 中国医学科学院药物研究所 | www.pharmdata.ac.cn/cnpc/index.asp | 中国天然产物化学成分库收集了目前研究较为深入的中草药化学成分信息,共收录化学成分10 000余种,涉及中草药4 500余种。包括著录项目、中文名称、英文名称、分子式、分子量、化学结构、生物活性、植物来源等信息 | — |
Tab.2
Common virtual screening software"
类别 | 名称 | 主页 | 简介 | 参考文献 |
---|---|---|---|---|
分子对接软件 | Affinity | www.accelrys.com/insight/affinity | 基于模拟退火、分子力学和分子动力学模拟的分子对程序,计算较精准 | [22] |
AutoDock | www.scripps.edu/pub/olson-web/doc/autodock | 著名分子对接程序,由Scripps研究所开发 | [22] | |
Dock | www.dock.compbio.ucsf.edu | 应用最广泛的分子对接程序之一,免费开源 | [23] | |
DockVision | www.dockvision.com | 一组对接小程序,支持多种算法 | [24] | |
DockIt | www.metaphorics.com/dockit | 速度快,提供二维到三维转换功能,提供Energy、PLP和PMF评价方法 | [25] | |
eHITS | www.simbiosys.ca/ehits | 速度快,实现并行化 | [26] | |
Glide | www.schrodinger.com/prods/glide | 基于蒙特卡罗模拟的分子对接程序,可以用于数据库搜索 | [27] | |
GoldDock | www.ccdc.cam.ac.uk/prods/gold | 基于遗传算法的分子对接 | [28] | |
药效团模拟软件 | Apex-3D | www.biosym.com/apex-3d | 基于逻辑结构分析方法 | [29] |
Catalyst | www.accelrys.com/catalyst | 功能强大的药效团识别和数据库搜索软件 | — | |
DISCOtech | www.tripos.com/discotech | 提供多药效团模型进行数据库搜索,选取最优 | [30] | |
GASP | www.tripos.com/gasp | 基于遗传算法来实现药物分子之间的柔性叠和 | [31] | |
RECEPTOR | www.tripos.com/receptor | 基于活性类似物方法的药效团识别 | — | |
分子相似性软件 | FlexS | www.biosolveit.de/FlexS/ | 能进行3D-QSAR | [32] |
[1] | Forward Industrial Research Institute. Report of market demand forecast and investment strategy planning on China cosmetics industry(2018-2023) [EB/OL]. [2019-01-20]. |
[2] | Liu Jingtao, Liu Yingxue . Principle and application of computer aided drug design[J]. Science and Technology Innovation and Application, 2016 ( 33) : 52. |
[3] |
Yi F, Sun L, Xu L , et al. In silicoapproach for anti-thrombosis drug discovery: P2Y1R structure-based TCMs screening[J]. Frontiers in Pharmacology, 2016 ( 7) : 531.
doi: 10.3389/fphar.2016.00531 pmid: 5220089 |
[4] | Song Yunlong, Lu Beibei, Zhang Wannian . Methodology and application research of computer-aided drug design based on structure[J]. Pharmacy Progress, 2002,26(6) : 359-364. |
[5] | Zhao Limei, Tan Ninghua . Overview of the physical composition and database construction of natural products in foreign countries[J]. Chinese Journal of Traditional Chinese Medicine, 2015,40(1) : 29-35. |
[6] |
Kim S K, Nam S J, Jang H , et al. A database of medicinal materials and chemical compounds in Northeast Asian traditional medicine[J]. BMC Complementary and Alternative Medicine, 2015,15:218.
doi: 10.1186/s12906-015-0758-5 |
[7] |
Fang X, Shao L, Zhang H , et al. A comprehensive herbal medicine information system for cancer[J]. Journal of Medicinal Chemistry, 2005,48(5) : 1481-1488.
doi: 10.1021/jm049838d pmid: 15743190 |
[8] | Chen L, Zhang Y H, Zheng M , et al. Identification of compound-protein interactions through the analysis of gene ontology, kegg enrichment for proteins and molecular fragments of compounds[J]. Molecular Genetics & Genomics, 2016,291(6) : 2065-2079. |
[9] |
Loub W D, Farnsworth N R, Soejarto D D , et al. Computer handling of natural product research data[J]. J Chem Inf Comput Sci, 1985,25(2) : 99-103.
doi: 10.1021/ci00046a009 |
[10] | Chen Y C . The worlds largest traditional Chinese medicine database for drug screening in silico[J]. Plos One, 2011 ( 6) : e15939. |
[11] | Xue R, Fang Z, Zhang M , et al. Traditional Chinese medicine integrative database for herb molecular mechanism analysis[J]. Nucleic Acids Research, 2013,41(D1) : D1089-D1095. |
[12] |
Ru J, Li P, Wang J , et al. A database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics, 2014,6(1) : 13-18.
doi: 10.1186/1758-2946-6-13 |
[13] | Irwin J J, Sterling T, Mysinger M M , et al. A free tool to discover chemistry for biology[J]. Journal of Chemical Information & Modeling, 2012,52(7) : 1757-1768. |
[14] |
Sougrat R, Morand M, Gondran C , et al. Functional expression of AQP3 in human skin epidermis and reconstructed epidermis[J]. Journal of Investigative Dermatology, 2002,118(4) : 678-685.
doi: 10.1046/j.1523-1747.2002.01710.x pmid: 11918716 |
[15] |
Okamura K, Ohe R, Abe Y , et al. Immunohistopathological analysis of frizzled-4-positive immature melanocytes from hair follicles of patients with rhododenol-induced leukoderma[J]. Journal of Dermatological Science, 2015,80(2) : 156-158.
doi: 10.1016/j.jdermsci.2015.07.015 |
[16] |
Carnevale V, Rohacs T . TRPV1: A target for rational drug design[J]. Pharmaceuticals, 2016,9(3) : 52-71.
doi: 10.3390/ph9030052 |
[17] |
Jorgensen C, Furini S, Domene C . Energetics of ion permeation in an open-activated TRPV1 channel[J]. Biophysical Journal, 2016,111(6) : 1214-1222.
doi: 10.1016/j.bpj.2016.08.009 pmid: 27653480 |
[18] |
Zhang J, Zhou Z, Zhang N , et al. Establishment of preliminary regulatory network of TRPV1 and related cytokines[J]. Saudi Journal of Biological Sciences, 2017,24(3) : 582.
doi: 10.1016/j.sjbs.2017.01.029 |
[19] |
Forsby A, Norman K G, Andaloussi-Lilja J E , et al. Using novel in vitro nociocular assay based on TRPV1 channel activation for prediction of eye sting potential of baby shampoos[J]. Toxicological Sciences, 2012,129(129) : 325-331.
doi: 10.1093/toxsci/kfs198 |
[20] |
Gao Y, Cao E, Julius D , et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action[J]. Nature, 2016,534(7607) : 347-351.
doi: 10.1038/nature17964 pmid: 4911334 |
[21] |
Yi F, Tan X L, Yan X , et al. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach[J]. Chinese Medicine, 2016,11(1) : 42-58.
doi: 10.1186/s13020-016-0112-y pmid: 5037646 |
[22] |
Cosconati S, Forli S, Perryman A L , et al. Virtual screening with autodock: theory and practice[J]. Expert Opinion on Drug Discovery, 2010,5(6) : 597-607.
doi: 10.1517/17460441.2010.484460 |
[23] |
William J A, Trent E B, Sudipto M , et al. Impact of new features and current docking performance[J]. Journal of Computational Chemistry, 2015,36(15) : 1132-1156.
doi: 10.1002/jcc.23905 pmid: 25914306 |
[24] |
Hart T N, Ness S R, Read R J . Critical evaluation of the research docking program for the CASP2 challenge[J]. Proteins-structure Function & Bioinformatics, 2010,29(S1) : 205-209.
doi: 10.1002/(SICI)1097-0134(1997)1+<205::AID-PROT27>3.0.CO;2-R pmid: 9485513 |
[25] |
Sullivan D C, Martin E J . Exploiting structure-activity relationships in docking[J]. Journal of Chemical Information and Modeling, 2008,48(4) : 817-830.
doi: 10.1021/ci700439z |
[26] |
Zsoldos Z, Reid D, Simon A , et al. A new fast, exhaustive flexible ligand docking system[J]. Journal of Molecular Graphics & Modelling, 2008,26(1) : 198-212.
doi: 10.1016/j.jmgm.2006.06.002 pmid: 16860582 |
[27] |
Friesner R A, Banks J L, Murphy R B , et al. A new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy[J]. Journal of Medicinal Chemistry, 2004,47(7) : 1739-1749.
doi: 10.1021/jm0306430 |
[28] |
Jones G, Willett P, Glen R C , et al. Development and validation of a genetic algorithm for flexible docking[J]. Journal of Molecular Biology, 1997,267(3) : 727-748.
doi: 10.1006/jmbi.1996.0897 |
[29] |
Babu M A, Shakya N, Prathipati P , et al. Development of 3D-QSAR models for 5-lipoxygenase antagonists: chalcones[J]. Bioorg Med Chem, 2002,10(12) : 4035-4041.
doi: 10.1016/S0968-0896(02)00313-9 |
[30] |
Liu G Y, Ju X L, Cheng J , et al. 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech[J]. Chemosphere, 2010,78(3) : 300-306.
doi: 10.1016/j.chemosphere.2009.10.038 pmid: 19914677 |
[31] |
Patel Y, Gillet V J, Bravi G , et al. A comparison of the pharmacophore identification programs: catalyst, discoISCO and gasp[J]. J Comput Aided Mol Des, 2002,16(8/9) : 653-681.
doi: 10.1023/A:1021954728347 pmid: 12602956 |
[32] |
Lemmen C, Lengauer T, Klebe G . A method for fast flexible ligand superposition[J]. Journal of Medicinal Chemistry, 1998,41(23) : 4502-4520.
doi: 10.1021/jm981037l |
[1] | Li Xue,Wang Yanping,Yang Zhaojun,Han Jiabing,Li Wen,Hu Fangdi. Analysis of domestic general cosmetics containing plant materials from 2014 to 2021 [J]. China Surfactant Detergent & Cosmetics, 2022, 52(8): 875-881. |
[2] | DENG Xiao-feng, MENG Hong, LI Li, LIU You-ting, DONG Yin-mao. Application of processing technique in developing plant materials in formulation of cosmetic products [J]. China Surfactant Detergent & Cosmetics, 2015, 45(4): 226-229. |
|