日用化学工业 ›› 2022, Vol. 52 ›› Issue (6): 645-655.doi: 10.3969/j.issn.1001-1803.2022.06.011
张永涛1,2,赵净沙1,2,蒋雁冰1,2,赵丹1,2,王昌涛1,2,李萌1,2,*()
收稿日期:
2021-08-25
修回日期:
2022-05-27
出版日期:
2022-06-22
发布日期:
2022-06-22
通讯作者:
李萌
Zhang Yongtao1,2,Zhao Jingsha1,2,Jiang Yanbing1,2,Zhao Dan1,2,Wang Changtao1,2,Li Meng1,2,*()
Received:
2021-08-25
Revised:
2022-05-27
Online:
2022-06-22
Published:
2022-06-22
Contact:
Meng Li
摘要:
天然产物香料作为食品、药品和日用化学品的添加成分,市场需求高,有着较高的开发利用价值。从动植物中提取香料产物存在来源少、含量低和分离困难等缺点,化学合成香料又存在着安全隐患和污染问题,很难满足市场需求。因此,研究与开发生产天然产物香料的微生物来补充或代替原有的传统提取和化学合成方法具有重要的理论意义和潜在的应用价值。酵母菌作为代谢工程菌株的一类,细胞内具有更好表达异源蛋白的细胞结构和翻译后修饰机制。文章总结了有关对酵母菌进行代谢改造生产萜类、芳香族类及脂肪族类香料化合物的具体实例和研究进展,包括所涉及的宿主菌株、关键酶、代谢途径、改造策略以及发酵条件优化等,并在最后讨论了酵母代谢工程改造生产天然产物香料目前所面临的问题和未来的发展方向。
中图分类号:
张永涛,赵净沙,蒋雁冰,赵丹,王昌涛,李萌. 代谢工程改造酵母生产香料的研究进展[J]. 日用化学工业, 2022, 52(6): 645-655.
Zhang Yongtao,Zhao Jingsha,Jiang Yanbing,Zhao Dan,Wang Changtao,Li Meng. Research progress in yeast metabolic engineering to produce natural product flavors[J]. China Surfactant Detergent & Cosmetics, 2022, 52(6): 645-655.
表 2
其他萜类香料在酵母底盘细胞中异源生产的实例"
菌株 | 萜类 | 工程策略 | 发酵条件 | 滴度/产率 | 参考 |
---|---|---|---|---|---|
S. cerevisiae YLin-12 strain | 芳樟醇 (无环单萜) | SKIK tag与芳樟醇合成酶t67OMcLISE343D/E352HN端融合 SKIK-t67OMcLISE343D/E352H和ERG20F96W/N127W的组装 PERG1介导ERG20下调 | 补料分批发酵 | 80.9 mg/L | [ |
S. cerevisiae SCICK17 strain | α-檀香烯 (倍半萜) | 引入异源檀香烯合酶(SanSyn) 过表达HMGR、下调ERG9、敲除DPP1和LPP1 | 补料分批发酵 | 92 mg/L | [ |
S. cerevisiae BY4741 strain | 广藿香醇 (倍半萜) | ERG20-PTS融合 HMGR,IDI1,UPC2-1过表达 EGR9启动子由HXT1替代 除DPP1和LPP1 | 5 L补料分批生物反应器发酵 | 466.8 mg/L | [ |
P. pastoris | 龙涎香醇 (三萜) | 引入AaSHC D377C和BmeTC D373C环化酶基因 HMGR和ERG9过表达 加入特比萘芬抑制ERG1 | 补料分批发酵 | 14.9 mg/L | [ |
[1] | Liu Shuwen. Reflections on the research and development of the flavors industry[J]. Flavour Fragrance Cosmetics, 2018, 4: 70-73. |
[2] | Yang Shaoxiang, Liu Yongguo, Liang Sen, et al. Food flavor development trends and challenges[J]. Fine Chemicals, 2016, 33 (5) : 481-556. |
[3] | Changjiang Securities. 2020 Flavor and fragrance industry in-depth research report[R]. Wu Han: Changjiang Securities Research Institute, 2020. |
[4] | Pan Lixia, Zhu Jing, Wang Qingyan, et al. The latest development of cytochrome P450 enzyme biotransformation and new catalytic reactions[J]. Guangxi Science, 2018, 25 (3) : 258-261. |
[5] | Su Liqiu, Zhang Ge, Yao Zhen, et al. Research progress in non-traditional yeast metabolic engineering[J]. Chinese Journal of Bioengineering, 2021, 37 (5) : 1659-1676. |
[6] |
Xin Fengjiao, Sun Lichao, Li Shuying, et al. Research progress in synthetic biology of terpenoids[J]. Biotechnology Bulletin, 2017, 33 (1) : 64-75.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.007 |
[7] | Chen Mingkai, Ye Lidan, Yu Hongwei. Research progress on metabolic modification of Saccharomyces cerevisiae to synthesize terpenoids[J]. Journal of Bioengineering, 2021, 37 (6) : 2085-2104. |
[8] |
Dong L, Miettinen K, Goedbloed M, et al. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: Similar activity but difference in subcellular localization[J]. Metabolic Engineering, 2013, 20: 198-211.
doi: 10.1016/j.ymben.2013.09.002 |
[9] |
Zhao C, Yu Z, Teixeira J A, et al. Functional characterization of a Dendrobium officinale geraniol synthase DoGES1 involved in floral scent formation[J]. Int J Mol Sci, 2020, 21 (19) : 7005.
doi: 10.3390/ijms21197005 |
[10] |
Jiang G, Yao M, Wang Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 41: 57-66.
doi: 10.1016/j.ymben.2017.03.005 |
[11] |
Zhao J, Li C, Zhang Y, et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2017, 16 (1) : 17.
doi: 10.1186/s12934-017-0641-9 |
[12] |
Zhao J, Bao X, Li C, et al. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2016, 100 (10) : 4561-4571.
doi: 10.1007/s00253-016-7375-1 |
[13] |
Uan T, Hen Q, Hao P, et al. Identification of enzymes responsible for the reduction of geraniol to citronellol[J]. Nat. Prod. Bioprospect, 2011, 1: 108-111.
doi: 10.1007/s13659-011-0032-6 |
[14] | Jiang G, Yao M, Wang Y, et al. A “push-pull-restrain” strategy to improve citronellol production in Saccharomyces cerevisiae[J]. Metabolic Engineering Journal, 2021, 66: 51-59. |
[15] |
Jongedijk E, Cankar K, Buchhaupt M, et al. Biotechnological production of limonene in microorganisms[J]. Applied Microbiology and Biotechnology, 2016, 100 (7) : 2927-2938.
doi: 10.1007/s00253-016-7337-7 pmid: 26915992 |
[16] |
Cao X, Lv Y, Chen J, et al. Biotechnology for biofuels metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction[J]. Biotechnology for Biofuels, 2016, 9: 214.
doi: 10.1186/s13068-016-0626-7 |
[17] |
Cheng S, Liu X, Jiang G, et al. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019, 8 (5) : 968-975.
doi: 10.1021/acssynbio.9b00135 pmid: 31063692 |
[18] |
Ignea C, Trikka F, Nikolaidis A, et al. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase[J]. Metabolic Engineering, 2015, 27: 65-75.
doi: 10.1016/j.ymben.2014.10.008 |
[19] |
Lu Y, Yang Q, Lin Z, et al. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica[J]. Microbial Cell Factories, 2020, 19 (1) : 49.
doi: 10.1186/s12934-020-01309-0 |
[20] |
Zhou P, Du Y, Fang X, et al. Combinatorial modulation of linalool synthase and farnesyl diphosphate synthase for linalool overproduction in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2021, 69 (3) : 1003-1010.
doi: 10.1021/acs.jafc.0c06384 |
[21] |
Scalcinati G, Knuf C, Partow S, et al. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode[J]. Metabolic Engineering, 2012, 14 (2) : 91-103.
doi: 10.1016/j.ymben.2012.01.007 pmid: 22330799 |
[22] |
Ma B, Liu M, Li Z, et al. Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2019, 67: 8590-8598.
doi: 10.1021/acs.jafc.9b03456 |
[23] | Moser S, Leitner E, Plocek T, et al. Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein[J]. Yeast, 2020, 67 (31) : 8590-8598. |
[24] |
Cordente A, Schmidt S, Beltran G, et al. Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction[J]. Applied Microbiology and Biotechnology, 2019, 103 (11) : 4325-4336.
doi: 10.1007/s00253-019-09840-w pmid: 31020380 |
[25] |
Nguyen T, Iwaki A, Ohya Y, et al. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2014, 117 (1) : 33-38.
doi: 10.1016/j.jbiosc.2013.06.008 pmid: 23850265 |
[26] |
Martínez-Avila O, Sánchez A, Font X, et al. Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2018, 102 (23) : 9991-10004.
doi: 10.1007/s00253-018-9384-8 pmid: 30293195 |
[27] | Zhu Linghuan, Xu Sha, Li Youran, et al. The effect of deletion of PDC5 gene in Saccharomyces cerevisiae on the synthesis of 2-phenylethanol and related metabolic modification[J]. Food and Fermentation Industry, 2021, 47 (16) : 23-30. |
[28] |
Kong S, Pan H, Liu X, et al. De novo biosynthesis of 2-phenylethanol in engineered Pichia pastoris[J]. Enzyme and Microbial Technology, 2020, 133: 109459.
doi: 10.1016/j.enzmictec.2019.109459 |
[29] |
Verstrepen K, Van Laere S, Vanderhaegen B, et al. Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF 2 control the formation of a broad range of volatile esters[J]. Applied and Environmental Microbiology, 2003, 69 (9) : 5228-5237.
doi: 10.1128/AEM.69.9.5228-5237.2003 pmid: 12957907 |
[30] |
Guo D, Zhang L, Kong S, et al. Metabolic engineering of escherichia coli for production of 2-phenylethanol and 2-phenylethyl acetate from glucose[J]. Journal of Agricultural and Food Chemistry, 2018, 66 (23) : 5886-5891.
doi: 10.1021/acs.jafc.8b01594 |
[31] |
Mariska L, Florian F, Marius G, et al. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates[J]. Yeast, 2006, 23 (9) : 641-659.
pmid: 16845703 |
[32] |
Gallage N, Møller B. Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid[J]. Molecular Plant, 2015, 8 (1) : 40-57.
doi: 10.1016/j.molp.2014.11.008 |
[33] |
Hansen E, Møller B, Kock G, et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae)[J]. Applied and Environmental Microbiology, 2009, 75 (9) : 2765-2774.
doi: 10.1128/AEM.02681-08 pmid: 19286778 |
[34] |
Vannelli T, Wei Q, Sweigard J, et al. Production of phydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi[J]. Metabolic Engineering, 2007, 9 (2) : 142-151.
doi: 10.1016/j.ymben.2006.11.001 pmid: 17204442 |
[35] |
Gottardi M, Knudsen J, Prado L, et al. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2017, 101 (12) : 4883-4893.
doi: 10.1007/s00253-017-8220-x pmid: 28353001 |
[36] | Gottardi M, Grün P, Bode H, et al. Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product[J]. FEMS Yeast Research, 2017, 17 (8) : 1-10. |
[37] |
Holt S, Miks M, De Carvalho B, et al. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages[J]. FEMS Microbiology Reviews, 2019, 43 (3) : 193-222.
doi: 10.1093/femsre/fuy041 |
[38] | Liu Canzhen, Qin Weishuai, Sun Yuxia, et al. Saccharomyces cerevisiae higher alcohol synthesis pathway and key genes[J]. China Brewed. 2018, 37 (8) : 9-13. |
[39] |
Siripong W, Wolf P, Kusumoputri T, et al. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate[J]. Biotechnology for Biofuels, 2018, 11 (1) : 1-16.
doi: 10.1186/s13068-017-1003-x |
[40] |
Siripong W, Angela C, Tanapongpipat S, et al. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-butanol)[J]. Enzyme and Microbial Technology, 2020, 138: 109557.
doi: 10.1016/j.enzmictec.2020.109557 |
[41] |
Cui D, Zhang Y, Xu J, et al. PGK 1 promoter library for the regulation of acetate ester production in Saccharomyces cerevisiae during Chinese spirits fermentation[J]. Journal of Agricultural and Food Chemistry, 2018, 66 (28) : 7417-7427.
doi: 10.1021/acs.jafc.8b02114 |
[42] |
Li W, Wang J, Zhang C, et al. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese spirits fermentation[J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44 (6) : 949-960.
doi: 10.1007/s10295-017-1907-2 |
[43] |
Saerens S, Verstrepen K, Van Laere S, et al. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity[J]. Journal of Biological Chemistry, 2006, 281 (7) : 4446-4456.
doi: 10.1074/jbc.M512028200 pmid: 16361250 |
[44] |
Yin H, Liu L, Yang M, et al. Enhancing medium-chain fatty acid ethyl ester production during beer fermentation through EEB1 and ETR1 overexpression in Saccharomyces pastorianus[J]. Journal of Agricultural and Food Chemistry, 2019, 67 (19) : 5607-5613.
doi: 10.1021/acs.jafc.9b00128 |
[45] | Zhuang S, Fu J, Powell C, et al. Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA: ethanol O-acyltransferase Eht1 or Eeb1[J]. SpringerPlus, 2015, 467: 1-9. |
[46] |
Chen Y, Luo W, Gong R, et al. Improved ethyl caproate production of Chinese liquor yeast by overexpressing fatty acid synthesis genes with OPI1 deletion[J]. Journal of Industrial Microbiology and Biotechnology, 2016, 43 (9) : 1261-1270.
doi: 10.1007/s10295-016-1795-x |
[47] |
Chen Y, Li F, Guo J, Liu G, et al. Enhanced ethyl caproate production of Chinese liquor yeast by overexpressing EHT1 with deleted FAA1[J]. Journal of Industrial Microbiology and Biotechnology, 2014, 41 (3) : 563-572.
doi: 10.1007/s10295-013-1390-3 |
[48] | Hu Mingyi, Wang Zhong. Edible spice acetoin[J]. Fine and Specialty Chemicals, 2002, 1: 20-21. |
[49] | Chen Yuanyuan, Wu Yan, Liu Xiaoguang. The regulation and application of acetoin biosynthesis[J]. Journal of Biology, 2014, 31 (5) : 76-84. |
[50] | Meng Wu, Wang Ruiming, Xiao Dongguang. Study on 2, 3-butanediol regulating product production of tetramethylpyrazine and acetoin synthetic bacteria[J]. Food and Fermentation Industry, 2016, 41 (1) : 21-25. |
[51] | Chen Shiia, Li Lingling, Chen Yefu, et al. Breeding of yeast strains with high-yield of acetoin and its application in Chinese spirits production to improve tetramethylpyrazine content[J]. Brewing Technology, 2018, 10: 114-119. |
[52] |
Bae S, Kim S, Hahn J. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2, 3-butanediol dehydrogenase and expression of NADH oxidase[J]. Scientific Reports, 2016, 6: 27667.
doi: 10.1038/srep27667 |
[53] |
Bae S, Kim S, Park H, et al. High-yield production of (R)-acetoin in Saccharomyces cerevisiae by deleting genes for NAD(P)H-dependent ketone reductases producing meso-2, 3-butanediol and 2, 3-dimethylglycerate[J]. Metabolic Engineering, 2021, 66: 68-78.
doi: 10.1016/j.ymben.2021.04.001 |
[1] | 王玮, 邢玉瑾, 张雪. 气相色谱-质谱法测定化妆品中19种香精香料[J]. 日用化学工业(中英文), 2023, 53(5): 581-587. |
[2] | 王风楼,Anjoe Chong,李俊. 喜马拉雅土壤酵母的分离及其发酵滤液对 皮肤细胞功效的初步研究[J]. 日用化学工业(中英文), 2022, 52(12): 1314-1319. |
[3] | 杨婷婷,易路遥,王绎,李杰,吉伟佳,章红. 采用DPRA替代方法评价3种香料的皮肤致敏性[J]. 日用化学工业, 2021, 51(5): 438-442. |
[4] | 刘平平,虞旦,王昌涛,杨帆,李萌,张佳婵. 三七发酵液多糖抗衰老活性研究[J]. 日用化学工业, 2019, 49(6): 369-376. |
[5] | 王玉健,梁振纲,符灵梅,董存柱. 高效液相色谱-串联质谱法测定香水中24种香料类过敏原物质残留量[J]. 日用化学工业, 2018, 48(8): 472-477. |
[6] | 王久标, 储 鸿. 抗紫外聚多巴胺香料纳米胶囊缓释体系的研究[J]. 日用化学工业, 2018, 48(10): 582-588. |
[7] | 王玉健, 庞道标, 符灵梅, 梁振纲, 董存柱. 化妆品中过敏性香料及检测技术研究进展[J]. 日用化学工业, 2018, 48(1): 51-56. |
[8] | 向诗银, 杨水金. H6P2Mo9W9O62/Cu3(BTC)2的制备及催化合成缩醛(酮)[J]. 日用化学工业, 2017, 47(5): 281-285. |
[9] | 王玥, 于海园, 施雁勤, 潘仙华, 卢艳花, 曹平. 当归净油抗衰老及抗炎祛痘功效的体外实验研究[J]. 日用化学工业, 2017, 47(2): 87-89. |
[10] | 宋肖洁, 史晓婷, 吴越. “太空人参酵母”对在模拟微重力下人原代成纤维细胞的保护作用[J]. 日用化学工业, 2017, 47(12): 698-702. |
[11] | 向诗银, 李志鹏, 杨水金. SBA-15复合材料的制备及其催化合成环己酮乙二醇缩酮[J]. 日用化学工业, 2017, 47(11): 641-644. |
[12] | 王中天,于凤丽,袁冰,解从霞,于世涛. α-蒎烯催化环氧化研究进展[J]. 日用化学工业, 2016, 46(6): 353-358. |
[13] | 李岳秦,杨永兴,侯相林. 碱催化2,5-己二酮脱水制3-甲基-2-环戊烯-1-酮[J]. 日用化学工业, 2016, 46(5): 292-295. |
[14] | 廖峰,李国光,熊丽丹,杨海延,李利. 酵母提取物对成纤维细胞的作用及抑制黑素生成的研究[J]. 日用化学工业, 2016, 46(2): 97-100. |
[15] | 宋肖洁,周春霞,吴越. “太空人参酵母”在化妆品中潜在应用研究[J]. 日用化学工业, 2016, 46(12): 703-708. |
|