[1] |
Tao Yan. Proteinase K molecular motion induced by substrate binding[D]. Kunming: Yunnan University, 2012.
|
[2] |
Siezen R J, De V W M, Leunissen J A M, et al. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases[J]. Protn. Eng., 1991,4(7) : 719-737.
|
[3] |
Blow D M. Structure and mechanism of chymotrypsin[J]. Accounts of Chemical Research, 1976,9(4) : 145-152.
doi: 10.1021/ar50100a004
|
[4] |
Tsukada H, Blow D M. Structure of alpha-chymotrypsin refined at 1.68 Å resolution[J]. Journal of Molecular Biology, 1985,184(4) : 703-711.
pmid: 4046030
|
[5] |
Neurath H. The versatility of proteolytic enzymes[J]. Journal of Cellular Biochemistry, 1986,32(1) : 35.
doi: 10.1002/jcb.240320105
pmid: 3533969
|
[6] |
Martin J R, Mulder F A, Karimi-Nejad Y, et al. The solution structure of serine protease PB92 from bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site[J]. Structure, 1997,5(4) : 521-532.
doi: 10.1016/s0969-2126(97)00208-6
pmid: 9115441
|
[7] |
Li Jing. Study on the interaction and application of metal calcium ion with alkaline protease[D]. Taiyuan: Shanxi University, 2018.
|
[8] |
Zhang Jian, Zhao Yongxiang. Study on the interaction between calcium ions and alkaline protease of bacillus[J]. International Journal of Biological Macromolecules, 2018.
doi: 10.1016/j.ijbiomac.2021.04.116
pmid: 33892028
|
[9] |
Yin Kai liang. Some basic applications and theories of molecular dynamics simulation[D]. Hangzhou: Zhejiang University, 2006.
|
[10] |
Yoon J, Park J, Jang S, et al. Conformational characteristics of unstructured peptides: alpha-synuclein[J]. Journal of Biomolecular Structure & Dynamics, 2008,25(5) : 505-515.
doi: 10.1080/07391102.2008.10507197
pmid: 18282005
|
[11] |
Cordomí A, Ramon E, Garriga P, et al. Molecular dynamics simulations of rhodopsin point mutants at the cytoplasmic side of helices 3 and 6[J]. Journal of Biomolecular Structure & Dynamics, 2008,25(6) : 573-587.
doi: 10.1080/07391102.2008.10507204
pmid: 18399691
|
[12] |
CalvinYu-ChianChen, Yuh-FungChen, Chieh-HsiWu, et al. What is the effective component in suanzaoren decoction for curing insomnia? Discovery by virtual screening and molecular dynamic simulation[J]. Journal of Biomolecular Structure & Dynamics, 2008,26(1) : 57-64.
doi: 10.1080/07391102.2008.10507223
pmid: 18533726
|
[13] |
Zhao J H, Yang C T, Wu J W, et al. RING domains functioning as E3 ligases reveal distinct structural features: a molecular dynamics simulation study[J]. Journal of Biomolecular Structure & Dynamics, 2008,26(1) : 65-73.
doi: 10.1080/07391102.2008.10507224
pmid: 18533727
|
[14] |
Macchion B N, Str?Mberg R, Nilsson L. Analysis of the stability and flexibility of RNA complexes containing bulge loops of different sizes[J]. Journal of Biomolecular Structure & Dynamics, 2008,26(2) : 163-173.
doi: 10.1080/07391102.2008.10507232
pmid: 18597538
|
[15] |
Sonavane U B, Ramadugu S K, Joshi R R. Study of early events in the protein folding of villin headpiece using molecular dynamics simulation[J]. Journal of Biomolecular Structure & Dynamics, 2008,26(2) : 203-214.
doi: 10.1080/07391102.2008.10507236
pmid: 18597542
|
[16] |
Mehrnejad F, Chaparzadeh N. Structural and dynamical studies of humanin in water and TFE/water mixture: a molecular dynamics simulation[J]. Journal of Biomolecular Structure & Dynamics, 2008,26(2) .
pmid: 18597538
|
[17] |
Yoon J, Jang S, Lee K, et al. Simulation Studies on the stabilities of aggregates formed by fibril-forming segments of α-synuclein[J]. Journal of Biomolecular Structure & Dynamics, 2009,27(3) : 259-269.
doi: 10.1080/07391102.2009.10507314
pmid: 19795910
|
[18] |
Cordomí A, Perez J J. Structural rearrangements of rhodopsin subunits in a dimer complex: a molecular dynamics simulation study[J]. Journal of Biomolecular Structure & Dynamics, 2009,27(2) : 127-147.
pmid: 19583439
|
[19] |
Bairagya H R, Mukhopadhyay B P, Sekar K. An insight to the dynamics of conserved water molecular triad in IMPDH II (Human): recognition of cofactor and substrate to catalytic Arg 322[J]. Journal of Biomolecular Structure & Dynamics, 2009,27(2) : 149-158.
doi: 10.1080/07391102.2009.10507304
pmid: 19583440
|
[20] |
Tai-Sung L, Cerutti D S, Dan M, et al. GPU-accelerated molecular dynamics and free energy methods in Amber18: performance enhancements and new features[J]. Journal of Chemical Information & Modeling, 2018.
doi: 10.1021/acs.jcim.1c00173
pmid: 33831302
|
[21] |
Pearlman D A, Case D A, Caldwell J W, et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules[J]. Computer Physics Communications, 1995,91:1-41.
|
[22] |
Lee M C, Yong D. Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model[J]. Proteins-Structure Function & Bioinformatics, 2010,55(3) : 620-634.
|
[23] |
Simmerling , Carlos , Hauser, et al. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB[J]. Journal of Chemical Theory and Computation: JCTC, 2015,11(8) : 3696-3713.
doi: 10.1021/acs.jctc.5b00255
pmid: 26574453
|