| [1] |
Lea J F, Rowlan L. Gas well deliquification[M]. Gulf Professional Publishing, 2019.
|
| [2] |
Li Xiaoke, Xiong Ying, Chen Dajun, et al. Utilization of nanoparticle-stabilized foam for gas well deliquification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482: 378-385.
doi: 10.1016/j.colsurfa.2015.05.053
|
| [3] |
Xiong Chunming, Cao Guangqiang, Zhang Jianjun, et al. Nanoparticle foaming agents for major gas fields in China[J]. Petroleum Exploration and Development, 2019, 46(5): 1022-1030.
doi: 10.1016/S1876-3804(19)60259-4
|
| [4] |
Yang Jiang, Jovancicevic V, Ramachandran S. Foam for gas well deliquification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309(1-3): 177-181.
doi: 10.1016/j.colsurfa.2006.10.011
|
| [5] |
Xiao Xiao, Qi Jinwan, Zhou Jingjie, et al. Enhanced salt thickening effect of the aqueous solution of peaked-distribution alcohol ether sulfates(AES)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128146.
doi: 10.1016/j.colsurfa.2021.128146
|
| [6] |
Mu Jianhai, Li Ganzuo, Xiao Hongdi, et al. Formation of wormlike micelles in anionic surfactant AES aqueous solutions[J]. Chinese Science Bulletin, 2001, 46: 1360-1363.
doi: 10.1007/BF03183389
|
| [7] |
Li Hua, Zhu Weiyao, Song Zhiyong. 2-D pore-scale oil recovery mechanisms of the anionic and nonionic surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130245.
doi: 10.1016/j.colsurfa.2022.130245
|
| [8] |
Li Chunling, Zhang Tiantian, Ji Xianjing, et al. Effect of Ca2+/Mg2+ on the stability of the foam system stabilized by an anionic surfactant: A molecular dynamics study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489: 423-432.
doi: 10.1016/j.colsurfa.2015.11.012
|
| [9] |
Wu Gang, Yuan Congtai, Ji Xianjing, et al. Effects of head type on the stability of gemini surfactant foam by molecular dynamics simulation[J]. Chemical Physics Letters, 2017, 682: 122-127.
doi: 10.1016/j.cplett.2017.06.017
|
| [10] |
Wu Gang, Zhu Qianqian, Yuan Congtai, et al. Molecular dynamics simulation of the influence of polyacrylamide on the stability of sodium dodecyl sulfate foam[J]. Chemical Engineering Science, 2017, 166: 313-319.
doi: 10.1016/j.ces.2017.03.011
|
| [11] |
Sun Huai, Ren Pengyu, Fried J R. The COMPASS force field: parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8(1-2): 229-246.
doi: 10.1016/S1089-3156(98)00042-7
|
| [12] |
Martyna G J, Tuckerman M E, Tobias D J, et al. Explicit reversible integrators for extended systems dynamics[J]. Molecular Physics, 1996, 87(5): 1117-1157.
doi: 10.1080/00268979600100761
|
| [13] |
Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log (N)method for Ewald sums in large systems[J]. Journal of Chemical Physics, 1993, 98(12): 10089-10092.
|
| [14] |
Ewald P P. Die Berechnung optischer und elektrostatischer Gitterpotentiale[J]. Annalen der Physik, 1921, 369(3): 253-287.
doi: 10.1002/andp.v369:3
|
| [15] |
Karasawa N, Goddard III William A. Force fields, structures, and properties of poly(vinylidene fluoride)crystals[J]. Macromolecules, 2002, 25(26): 7268-7281.
doi: 10.1021/ma00052a031
|
| [16] |
Liu Xiaochen, Zhao Yongxiang, Li Qiuxiao, et al. Adsorption behavior of fatty alcohol ether sulfonate at different interfaces[J]. Journal of Surfactants and Detergents, 2017, 20: 401-409.
doi: 10.1007/s11743-016-1918-4
|
| [17] |
Pu Wanfen, Du Daijun, Tang Yanli, et al. Synthesis of an alkyl polyoxyethylene ether sulfonate surfactant and its application in surfactant flooding[J]. Journal of Surfactants and Detergents, 2018, 21(5): 687-697.
doi: 10.1002/jsde.2018.21.issue-5
|
| [18] |
Fainerman V B, Makievski A V, Miller R. The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 87(1): 61-75.
doi: 10.1016/0927-7757(94)02747-1
|
| [19] |
Rillaerts E, Joos P. Rate of demicellization from the dynamic surface tensions of micellar solutions[J]. The Journal of Physical Chemistry, 1982, 86(17): 3471-3478.
doi: 10.1021/j100214a040
|
| [20] |
Yang Weiguang, Cao Yupeng, Ju Hongbin, et al. Amide Gemini surfactants linked by rigid spacer group 1,4-dibromo-2-butene: Surface properties, aggregate and application properties[J]. Journal of Molecular Liquids, 2021, 326: 115339.
doi: 10.1016/j.molliq.2021.115339
|
| [21] |
Binks B P, Meunier J, Abillon O, et al. Measurement of film rigidity and interfacial tensions in several ionic surfactant-oil-water microemulsion systems[J]. Langmuir, 1989, 5(2): 415-421.
doi: 10.1021/la00086a022
|
| [22] |
Han Weiwei, Fan Jiabao, Qiang Taotao, et al. A novel salt and condensate-resistant foam co-stabilized by mixtures of surfactants and citric acid for gas well deliquification[J]. Journal of Molecular Liquids, 2023, 385: 122426.
doi: 10.1016/j.molliq.2023.122426
|
| [23] |
Han Weiwei, Fan Jiabao, Lv Hongmiao, et al. Excellent foaming properties of anionic-zwitterionic-Gemini cationic compound surfactants for gas well deliquification: Experimental and computational investigations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129944.
doi: 10.1016/j.colsurfa.2022.129944
|
| [24] |
Han Weiwei, Lv Hongmiao, Kar T, et al. Experimental studies and computational exploration on an exceptionally salt/condensate resistant gas well foaming mixture compromising amino-betaine-ammonium surfactants and dodecanol[J]. Journal of Molecular Liquids, 2024, 397.
|
| [25] |
Mitchell B J. Viscosity of foam[M]. The University of Oklahoma, 1970.
|
| [26] |
Smith D L. Comparison of salt thickening of conventional and peaked alcohol ether sulfates[J]. Journal of the American Oil Chemists Society, 1991, 68: 629-633.
doi: 10.1007/BF02660167
|
| [27] |
Mu Jianhai, Li Ganzuo, Jia Xiaolei, et al. Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts[J]. Journal of Physical Chemistry B, 2002, 106(44): 11685-11693.
doi: 10.1021/jp014096a
|
| [28] |
Yaacob I I, Bose A. An investigation of microstructures in cationic/anionic surfactant suspensions by cryogenic transmission electron microscopy[J]. Journal of Colloid and Interface Science, 1996, 178(2): 638-647.
doi: 10.1006/jcis.1996.0161
|
| [29] |
Zhao Qiang, Qian Jinwen, Gui Zhangliang, et al. Interfacial self-assembly of cellulose-based polyelectrolyte complexes: pattern formation of fractal “trees”[J]. Soft Matter, 2010, 6(6): 1129-1137.
doi: 10.1039/b918529a
|
| [30] |
Kalur G C, Raghavan S R. Anionic wormlike micellar fluids that display cloud points: rheology and phase behavior[J]. Journal of Physical Chemistry B, 2005, 109(18): 8599-8604.
doi: 10.1021/jp044102d
|
| [31] |
Arleth L, Bergström M, Pedersen J S. Small-angle neutron scattering study of the growth behavior, flexibility, and intermicellar interactions of wormlike SDS micelles in NaBr aqueous solutions[J]. Langmuir, 2002, 18(14): 5343-5353.
doi: 10.1021/la015693r
|
| [32] |
Yang Jiang. Viscoelastic wormlike micelles and their applications[J]. Current Opinion in Colloid & Interface Science, 2002, 7(5-6): 276-281.
doi: 10.1016/S1359-0294(02)00071-7
|
| [33] |
Mu Jianhai, Li Ganzuo. The formation of wormlike micelles in anionic surfactant aqueous solutions in the presence of bivalent counterion[J]. Chemical Physics Letters, 2001, 345(1-2): 100-104.
doi: 10.1016/S0009-2614(01)00799-0
|
| [34] |
Mu Jianhai, Li Ganzuo. Rheology of viscoelastic anionic micellar solutions in the presence of a multivalent counterions[J]. Colloid and Polymer Science, 2001, 279: 872-878.
doi: 10.1007/s003960100508
|
| [35] |
Darvas M, Gilányi T, Jedlovszky P. Adsorption of poly(ethylene oxide)at the free water surface. A computer simulation study[J]. Journal of Physical Chemistry B, 2010, 114(34): 10995-11001.
doi: 10.1021/jp1034272
|
| [36] |
Ahmadi H, Hosseini E, Cha-Umpong W, et al. Incorporation of natural lithium-ion trappers into graphene oxide nanosheets[J]. Advanced Materials Technologies, 2021, 6(10): 2000665.
doi: 10.1002/admt.v6.10
|