欢迎访问《日用化学工业(中英文)》,今天是

日用化学工业(中英文) ›› 2025, Vol. 55 ›› Issue (9): 1112-1119.doi: 10.3969/j.issn.2097-2806.2025.09.004

• 基础研究 • 上一篇    下一篇

NH2-MIL-125(Ti)/C3N5复合材料的制备及光热催化还原CO2性能

胡红丹1,*(),赵鑫2   

  1. 1.江苏安全技术职业学院,江苏 徐州 221000
    2.齐鲁工业大学,山东 济南 250353
  • 收稿日期:2025-04-14 修回日期:2025-08-21 出版日期:2025-09-22 发布日期:2025-10-11
  • 基金资助:
    国家自然科学基金面上项目(2271801)

Preparation of NH2-MIL-125 (Ti)/C3N5 composite and its photothermal catalytic reduction of CO2 performance

Hongdan Hu1,*(),Xin Zhao2   

  1. 1. Jiangsu College of Safety Technology, Xuzhou, Jiangsu 221000, China
    2. Qilu University of Technology, Jinan, Shandong 250353, China
  • Received:2025-04-14 Revised:2025-08-21 Online:2025-09-22 Published:2025-10-11
  • Contact: *E-mail: hdhu1987@163.com.

摘要: 采用溶剂热法构建了S型富氮氮化碳(C3N5)负载金属有机框架化合物NH2-MIL-125(Ti)[NH2-MIL-125(Ti)/C3N5]异质结复合材料,通过XRD、XPS、SEM、TEM、UV-vis DRS和PL等手段对复合材料的物相晶型、元素组成、微观形貌、光谱吸收和光电子-空穴重组进行了表征。评价了复合材料光热催化还原CO2活性和稳定性,同时讨论了光热催化还原CO2的机理。结果表明,相比单一组分材料,NH2-MIL-125(Ti)/C3N5表现出显著提升光热催化还原CO2的活性,CH3OH和CO的产率分别为3.33和0.34 μmol/(g·h)。显著提升的光热催化还原CO2活性得益于复合材料高达674.916 m2/g的比表面积以及高效的光电子-空穴分离效率。通过原位XPS和普通XPS谱结合能位置的变化证明了NH2-MIL-125(Ti)和C3N5之间S型异质结的构建,电荷由NH2-MIL-125(Ti)向C3N5转移,弯曲能带和内建电场实现了光电子-空穴的高效分离,在C3N5的导带和NH2-MIL-125(Ti)的价带保留高还原和氧化活性的电子和空穴,在电子和热效应的作用下CO2被还原为CH3OH,同时生成了少量的CO。

关键词: NH2-MIL-125(Ti), 富氮氮化碳, S型异质结, 光热催化, CO2还原, 复合材料

Abstract:

Photocatalytic reduction of CO2 to hydrocarbon fuel is of great significance to alleviate the energy crisis and greenhouse effect. However, the recombination of photoelectron-holes greatly limits the catalytic activity of single-component material. In order to solve this problem, a S scheme nitrogen-rich carbon nitride (C3N5) supported metal-organic framework NH2-MIL-125(Ti)[NH2-MIL-125(Ti)/C3N5] heterojunction composite material was constructed by solvothermal method. The crystal phase, elemental composition, microstructure, spectral absorption and photoelectron-hole recombination of the composite material were characterized by XRD, XPS, SEM, TEM, UV-vis DRS and PL. The activity and stability of the composites for photothermal catalytic reduction of CO2 were evaluated, and the mechanism of photothermal catalytic reduction of CO2 was discussed. The results show that NH2-MIL-125(Ti)/C3N5 exhibits significantly enhanced photothermal composite material reduction of CO2 activity compared to the single component composite material. The yields of CH3OH and CO are 3.33 and 0.34 μmol/ (g·h), respectively. The significantly improved photothermal composite material reduction of CO2 activity is due to the high specific surface area of the composite material up to 674.916 m2/g and efficient photoelectron-hole separation efficiency. The construction of S scheme heterojunction between NH2-MIL-125(Ti) and C3N5 is proved by the change of binding energy position of in-situ XPS and ordinary XPS spectra. The charge ias transferred from NH2-MIL-125(Ti) to C3N5, and the bending energy band and built-in electric field realize the efficient separation of photoelectron-holes. The electrons and holes with high reduction and oxidation activity are retained in the conduction band of C3N5 and the valence band of NH2-MIL-125(Ti). Under the action of electron and thermal effects, CO2 is reduced to CH3OH and a small amount of CO is generated.

Key words: NH2-MIL-125(Ti), nitrogen-rich carbon nitride, S scheme heterojunction, photothermal catalysis, CO2 reduction, composite material

中图分类号: 

  • O644.1