China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (5): 649-658.doi: 10.3969/j.issn.2097-2806.2025.05.014
• Reviews • Previous Articles Next Articles
Ying Zhang,Hua Wang,Yuehua Zuo,Chenguang Wang,Ziqin Zhai,Ming Liu()
Received:
2024-05-21
Revised:
2025-05-15
Online:
2025-05-22
Published:
2025-06-11
Contact:
*E-mail: liumingb@163.com.
CLC Number:
Ying Zhang, Hua Wang, Yuehua Zuo, Chenguang Wang, Ziqin Zhai, Ming Liu. A review of determination methods for per-and polyfluoroalkyl substances[J].China Surfactant Detergent & Cosmetics, 2025, 55(5): 649-658.
Tab. 1
Typical domestic standard determination methods for PFAS"
仪器分析方法 | 检测对象 | 定量方法 | 定量限和/或检出限 | 标准编号 |
---|---|---|---|---|
LC-MS/MS | 各类纺织产品 | 外标法 | 全氟辛烷磺酰基化合物的定量限为0.5 μg/m3,全氟辛酸的定量限为0.005 mg/kg | GB/T 31126—2014 |
皮革、毛皮及其制品 | 外标法 | 定量限均为0.5 mg/kg | GB/T 36929—2018 | |
各类纺织品 | 外标法 | 定量限为0.03 mg/kg | GB/T 40917—2021 | |
各类纺织染整助剂 | 外标法 | 定量限0.5 mg/kg | GB/T 29493.2—2021 | |
含氟水性涂料、泡沫灭火材料、洗涤剂、织物整理剂、不粘炊具 | 外标法 | 检出限以全氟辛烷磺酸计,氟化工产品为质量分数0.000 2%,消费品为0.4 μg/m3 | GB/T 24169—2009 | |
涂料 | 外标法 | 检出限以全氟辛酸计为质量分数0.000 2% | GB/T 28606—2012 | |
纸板盒类、橡胶类、聚乙烯类、塑料类、树脂类、不粘锅涂层 | 内标法 | 检出限均为1.0 ng/g,定量限均为2.0 ng/g | GB 31604.35—2016 | |
分离膜产品 | 外标法 | 全氟辛烷磺酰基化合物的定量限为2 μg/kg,全氟辛酸的定量限为1 μg/kg | GB/T 33893—2017 | |
电子电气产品聚合物材料 | 外标法 | 全氟辛酸的检出限和定量限分别为0.01和0.003 5 mg/kg;全氟辛烷磺酸的检出限和定量限分别为0.006和0.021 mg/kg | GB/T 37760—2019 | |
动物源性食品 | 内标法 | 全氟辛酸和全氟辛烷磺酸的检出限分别为0.002和0.02 μg/kg,定量限分别为0.01和0.1 μg/kg | GB 5009.253—2016 | |
土壤和沉积物 | 内标法 | 取样量为2 g,试样定容体积为1.0 mL,进样体积为5.0 μL时,PFOS(以对应酸的浓度计)的方法检出限为0.4 μg/kg,定量限为1.6 μg/kg;PFOA(以对应酸的浓度计)的方法检出限为0.5 μg/kg,定量限为2.0 μg/kg | HJ 1334—2023 | |
地表水、地下水、生活污水、工业废水、海水 | 内标法 | 取样量为0.5 L,定容体积为1.0 mL,进样体积为5.0 μL时,PFOS(以对应酸的浓度计)的方法检出限为0.6 ng/L,定量限为2.4 ng/L,PFOA(以对应酸的浓度计)的方法检出限为0.5 ng/L,定量限为2.0 ng/L | HJ 1333—2023 | |
NMR | 泡沫灭火剂、水系灭火剂 | 内标法 | 检测限0.05% | XF/T 3020—2023 |
GC-MS/MS | 纸质材料 | 内标法 | 定量限均为10 μg/kg | SN/T 5352—2021 |
GC-MS | 各类纺织染整助剂 | 内标法 | 对氟化调聚物醇定量限10 mg/kg,对氟化丙烯酸酯定量限为1 mg/kg | GB/T 29493.2—2021 |
GC-ECD | 塑料制品 | 外标法 | 检出限0.005 mg/kg | DB35/T 1868—2019 |
Tab. 2
Typical standard determination methods at abroad for PFAS"
标准发布机构 | 检测对象 | 定量方法 | 仪器分析方法 | 定量限、检出限和/或报告限 | 方法编号 |
---|---|---|---|---|---|
美国环境保护署(EPA) | 试剂水、饮用水 | 内标法 | LC-MS/MS | 检出限0.53~2.8 ng/L | 方法537.1[ |
饮用水 | 内标法 | LC-MS/MS | 报告限1.4~16 ng/L | 方法533[ | |
水,固体,生物固体和组织样品 | 内标法 | LC-MS/MS | 定量限0.2~5 ng/mL | 方法1633[ | |
水基质 | 外标法 | CIC | 检出限1.5 μg F-/L | 方法1621[ | |
固定来源的空气排放 | 内标法 | LC-MS/MS | 检出限0.08~2.77 ng/m3 | OTM 45[ | |
固定来源的空气排放 | 内标法 | GC/MS | 检出限0.027~0.271 μg/m3 报告限0.081~0.813 μg/m3 | OTM 50[ | |
美国材料与试验协会(ASTM) | 水、污泥、进水、出水和废水 | 外标法 | LC-MS/MS | 检出限0.7~106.8 ng/L | D7979-20[ |
土壤、污泥 | 外标法 | LC-MS/MS | 报告限25~125 ng/kg | D8535-23[ | |
土壤 | 外标法 | LC-MS/MS | 检出限2.41~258.37 ng/kg | D7968-23[ | |
水基质 | 外标法 | LC-MS/MS | 检出限1.2~20.3 ng/L | D8421-22[ | |
国际标准化组织(ISO) | 皮革 | 内标法 | LC-MS/MS | 定量限0.2 mg/kg | ISO 23702-1: 2023[ |
饮用水、天然水、海水、部分废水 | 内标法 | LC-MS/MS | 定量限≥0.2 ng/L | ISO 21675-2019[ | |
美国食品药品监督管理局(FDA) | 食品、饲料 | 内标法 | LC-MS/MS | 不同基质、不同目标物检出限2~481 ng/kg,定量限7~1 603 ng/kg | 方法 C-010.03[ |
[1] | 李怀波. 污水处理厂中全/多氟化合物分布特征、吸附及转化过程研究[D]. 无锡: 江南大学, 2021. |
[2] | 韩淼, 李泽楷, 许淋, 等. 全氟和多氟烷基化合物的生物体内迁移转化及毒性效应[J/OL]. 中国环境科学, 2024. http://doi.org/10.19674/j.cnki.issn1000-6923.20240004.002 |
[3] | Fenton S E, Ducatman A, Boobis A, et al. Per-and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research[J]. Environmental Toxicology and Chemistry, 2021, 40 (3) : 606-630. |
[4] | United Nations Environment Programme. Stockholm convention on persistent organic pollutants (POPs) text and annexes, revised in 2019[EB/OL]. https://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx |
[5] | Regulation (EU) No 2019/1021 of the European parliament and of the council of 20 June 2019 on persistent organic pollutants. [EB/OL]. https://echa.europa.eu/pops-legislation |
[6] | 中华人民共和国生态环境部. 重点管控新污染物清单(2023年版)[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202212/t20221230_1009167.html |
[7] | U. S. Environmental Protection Agency. Determination of selected per-andpolyfluorinated alkyl substances in drinkingwater by solid phase extraction and liquidchromatography/tandem mass spectrometry (LC/MS/MS). METHOD 537.1 [S/OL]. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=348508&Lab=CESER&simpleSearch=0&showCriteria=2&searchAll=537.1&TIMSType=&dateBeginPublishedPresented=03%2F24%2F2018 |
[8] | U. S. Environmental Protection Agency. Determination of per-andpolyfluoroalkyl substances in drinking water byisotope dilution anion exchange solid phaseextraction and liquid chromatography/tandemmass spectrometry. METHOD 533 [S/OL]. https://www.epa.gov/dwanalyticalmethods/method-533-determination-and-polyfluoroalkyl-substances-drinking-water-isotope |
[9] | U. S. Environmental Protection Agency. Analysis of Per-and polyfluoroalkyl substances (PFAS) in aqueous, solid, biosolids, and tissuesamples by LC-MS/MS. METHOD 1633 [S/OL]. https://www.epa.gov/system/files/documents/2024-01/method-1633-final-for-web-posting.pdf |
[10] | U. S. Environmental Protection Agency. Determination of adsorbable organic fluorine (AOF) in aqueous matrices by combustion ionchromatography (CIC). METHOD 1621 [S/OL]. https://www.epa.gov/system/files/documents/2024-01/method-1621-for-web-posting.pdf |
[11] | U. S. Environmental Protection Agency. Measurement of selected Per-and polyfluorinated alkylsubstances from stationary sources. OTM 45 [S/OL]. https://www.epa.gov/sites/default/files/2021-01/documents/otm_45_semivolatile_pfas_1-13-21.pdf |
[12] | U. S. Environmental Protection Agency. Sampling and analysis of volatile fluorinated compounds fromstationary sources using passivated stainless-steel canisters. OTM 50 [S/OL]. https://www.epa.gov/system/files/documents/2024-01/otm-50-release-1_0.pdf |
[13] | American Society for Testing and Materials.Standard test method for determination of per-and polyfluoroalkyl substances in water, sludge, influent, effluent and wastewater by liquid chromatography tandem mass spectrometry (LC/MS/MS). D7979-20 [S]. United States: ASTM International, 2020. |
[14] | American Society for Testing and Materials.Standard test method for determination of per-and polyfluoroalkyl substances (PFAS) in soil/biosolid matrices by solvent extraction, filtering, and followed by liquid chromatography tandem mass spectrometry (LC/MS/MS). D8535-23 [S]. United States: ASTM international, 2023. |
[15] | American Society for Testing and Materials.Standard test method for determination of polyfluorinated compounds in soil by liquid chromatography tandem mass spectrometry (LC/MS/MS). D7968-23 [S]. United States: ASTM international, 2023. |
[16] | American Society for Testing and Materials.Standard test method for determination of Per-and polyfluoroalkyl substances (PFAS) in aqueous matrices by co-solvation followed by liquid chromatography tandem mass spectrometry (LC/MS/MS). D8421-22 [S]. United States: ASTM international, 2022. |
[17] | The International Organization for Standardization.Leather-per-and polyfluoroalkyl substances—part 1:determination of non-volatile compounds by extraction method using liquid chromatography. ISO 23702-1: 2023 [S]. ISO 2023. |
[18] | The International Organization for Standardization.Water quality-determination of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in water-method using solid phase extraction and liquid chromatography-tandem mass spectrometry. ISO 21675: 2019 [S]. ISO 2019. |
[19] | U.S. Food & Drug Administration. Determination of 30 Per and polyfluoroalkyl substances (PFAS) in foodand feed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). C-010.03 [S/OL]. https://www.fda.gov/media/131510/download |
[20] | U. S. Environmental Protection Agency. Solvent dilution of non-potable waters. METHOD 3512 [S/OL]. https://www.epa.gov/hw-sw846/sw-846-test-method-3512-solvent-dilution-non-potable-waters |
[21] | U. S. Environmental Protection Agency. Per-and polyfluoroalkyl substances (PFAS) by liquid chromatography/tandem mass spectrometry (LC-MS/MS). METHOD 8327 [S/OL]. https://www.epa.gov/hw-sw846/sw-846-test-method-8327-and-polyfluoroalkyl-substances-pfas-liquid-chromatographytandem |
[22] | American Society for Testing and Materials.Standard guide for determination of airborne PFAS in the indoor air environment. D8560-24 [S]. United States: ASTM International, 2024. |
[23] | Houtz E F, Sedlak D L. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff[J]. Environmental Science & Technology, 2012, 46 (17) : 9342-9349. |
[24] | Houtz E F, Higgins C P, Field J A, et al. Persistence of perfluoroalkyl acid precursors in AFFF-impacted ground water and soil[J]. Environmental Science & Technology, 2013, 47 (15) : 8187-8195. |
[25] | D’Agostino L A, Mabury S A. Certain perfluoroalkyl and polyfluoroalkyl substances associated withaqueous film forming foam are widespread in canadian surface waters[J]. Environmental Science & Technology, 2017, 51: 13603-13613. |
[26] | 赵晓君, 朱兰兰, 苏婧怡, 等. 南极磷虾粉中氟形态及其分析技术[J]. 南方农业学报, 2012, 43 (9) : 1386-1390. |
[27] |
Cheng F, Zhang X, Dong Z M, et al. Smartphone app-based/ portable sensor for the detection of fluoro-surfactant PFOA[J]. Chemosphere, 2018, 191: 381-388.
doi: S0045-6535(17)31638-7 pmid: 29049961 |
[28] | Amin M A, Sobhani Z, Chadalavada S, et al. Smartphone-based/ Fluoro-SPE for selective detection of PFAS at ppb level[J]. Environmental Technology & Innovation, 2020, 18: 100778. |
[29] | Zhang F, Zheng Y, Liang J, et al. A simple and highly sensitive assay of perfluorooctanoic acid based on resonance light scattering technique[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 159: 7-12. |
[30] | Trinh V, Malloy C S, Durkin T J, et al. Detection of PFAS and fluorinated surfactants using differential behaviors at interfaces of complex droplets[J]. ACS Sens, 2022, 7 (5) : 1514-1523. |
[31] | Zheng Z, Yu H J, Geng W C, et al. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants[J]. Nature Communications, 2019, 10 (1) : 5762. |
[32] | Takayose M, Akamatsu K, Nawafune H, et al. Colorimetric detection of perfluorooctanoic acid (PFOA) utilizing polystyrene-modified gold nanoparticles[J]. Analytical Letters, 2012, 45 (18) : 2856-2864. |
[33] | 汪志辉. 石墨烯量子点传感器的制备及其对全氟辛酸检测[D]. 安徽: 合肥大学, 2022. |
[34] | Liu Q, Huang A Z, Wang N, et al. Rapid fluorometric determination of perfluorooctanoic acid by its quenching effect on the fluorescence of quantum dots[J]. Journal of Luminescence, 2015, 161: 374-381. |
[35] | Cennamo N, D’Agostino G, Porto G, et al. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water[J]. Sensors, 2018, 18 (6) : 1836. |
[36] | Pitruzzella R, Arcadio F, Perri C, et al. Ultra-low detection of perfluorooctanoic acid using a novel plasmonic sensing approach combined with molecularly imprinted polymers[J]. Chemosensors, 2023, 11 (4). |
[37] | Wei Y M, Liu H J, Wang S P, et al. A portable molecularly imprinted polymer-modified microchip sensor for the rapid detection of perfluorooctanoic acid[J]. Analyst, 2023, 148 (16) : 3851-3859. |
[38] | Tabar F A, Lowdon J, Caldara M, et al. Thermal determination of perfluoroalkyl substances in environmental samples employing a molecularly imprinted polyacrylamide as a receptor layer[J]. Environmental Technology & Innovation, 2023. DOI: 10.1016/j.eti.2023.103021. |
[39] | 张星. 基于重链抗体的全氟辛酸免疫检测的研究[D]. 上海: 上海交通大学, 2015. |
[40] | Sunantha G, Vasudevan N. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor[J]. Science of the Total Environment. 2020. DOI: 10.1016/j.scitotenv.2020.143544. |
[41] | Breshears L E, Mata-Robles S, Tang Y S, et al. Rapid, sensitive detection of PFOA with smartphone-based flow rate analysis utilizing competitive molecular interactions during capillary action[J]. Journal of Hazardous Materials, 2023, 446: 130699. |
[42] | Mann M M, Tang J D, Berger B W. Engineering human liver fatty acid binding protein for detection of poly- and perfluoroalkyl substances[J]. Biotechnology and Bioengineering, 2022, 119 (2) : 513-522. |
[43] | Moro G, Chiavaioli F, Liberi S, et al. Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance[J]. Results in Optics, 2021, 5: 100123. |
[44] | Lu D N, Zhu D Z, Gan H H, et al. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water[J]. Sensors and Actuators B: Chemical, 2022, 352: 131055. |
[45] | Pierpaoli M, Szopinska M, Olejnik K, et al. Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination[J]. Journal of Hazardous Materials, 2023, 458: 131873. |
[1] | Hongsheng Lu,Yang Yang,Yang Wu,Xiangyang Yan,Bo Lin. Advances in desorption-enhancing mechanisms for coalbed methane desorption agents [J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 687-699. |
[2] | Yujiang Wang,Longhao Tang,Xiaoqian Liu,Ning Feng,Hongguang Li. Particulated polyether: A novel defoamer for nonaqueous foams [J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 700-708. |
[3] | Yangbo Zhang,Yaqin Liang,Zhengwei Liu,Xiaoyu Ji,Xiaonan Zhao,Ruimin Gao. Synthesis and properties of Gemini quaternary ammonium surfactants containing ester groups C12-E2nOm-C12 [J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 709-714. |
[4] | Ping Li, Zhengwei Zhang, Jie Chai, Peiyu Ren, Shuoyu Wang, Jiayi Sun. Synthesis and properties of oleyl alcohol alkoxylates [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 591-600. |
[5] | Shuai Gao, Yajie Jiang, Lu Zhang, Jun Li, Yakui Wang, Zhifei Wang, Tao Geng. Interactions, surface activity and applications of the mixed system of polyhydroxy cationic surfactant and AES [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 554-562. |
[6] | Wanping Zhang, Jie Chen, Shanshan Wang, Jie Gu, Zhi Lv, Qianjie Zhang. Study of the phase behavior of liquid crystals formed in lecithin systems [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 563-572. |
[7] | Xiangji Meng, Jingru Wang, Yunkai Wang, Lifei Zhi, Guoyong Wang, Jiaqian Yang. Synthesis and development of organosilicon quaternary ammonium surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 640-648. |
[8] | Ting Sun, Xinzhi Liang, Minghao Pang, Xia Xin, Ning Feng, Hongguang Li. The molecular weight of carbon dots calculated from colligative properties and their application in estimating surface adsorption capacity [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 422-429. |
[9] | Guofang Gao, Yadan Feng, Ziwei Diao, Yongqiang Sun, Zhiyong Hu, Hailin Zhu. Effect of sodium laurate on the properties of sodium lauroyl glutamate [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 446-452. |
[10] | Fei Yan, Cheng Ma, Zhicheng Xu, Qingtao Gong, Lei Zhang, Lu Zhang. Study on the foam properties of extended anionic surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 415-421. |
[11] | Zhen Cheng, Tao Geng, Wenqi Wang, Xiumei Tai. Study on the preparation process and application of composite O/W emulsion of refined montan wax/beeswax [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 437-445. |
[12] | Hui Xu. Effects of microcapsulated emulsion polymer on the interfacial tension of extended surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 407-414. |
[13] | Haibing Cheng, Yong Zhang, Lei Sun, Weijia Li, Zhi Chen, Congming Tang, Li Chang. Synthesis and crosslinking properties of W-SN crosslinking agent [J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 279-285. |
[14] | Penghui Liang, Mengying Yuan, Yilei Ruan, Guofang Gao, Zhiyong Hu, Hailin Zhu. Synergistic effect of triazine-based Gemini surfactant and 2-mercaptoethanol on corrosion inhibition of carbon steel in 3.5%NaCl solution [J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 295-304. |
[15] | Hong Yang, Kang Yang, Ying Liu, Zhenzhen Shen, Kai Liu, Fangna Liu, Zhangchao Wang. Study on the adaptability of CO2 composite channeling plugging system in fractured ultra-low permeability reservoirs [J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 305-312. |
|