China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (4): 495-507.doi: 10.3969/j.issn.2097-2806.2025.04.012
• Reviews • Previous Articles Next Articles
Jiabao Fan1,Weiwei Han1,*(),Yanqiang Liu2,Qiang Liu3,Hongmiao Lv1,Sanbao Dong1,4,*(
)
Received:
2024-05-17
Revised:
2025-03-24
Online:
2025-04-22
Published:
2025-04-28
Contact:
E-mail: CLC Number:
Jiabao Fan, Weiwei Han, Yanqiang Liu, Qiang Liu, Hongmiao Lv, Sanbao Dong. Research progress of foam drainage agents for gas well deliquification[J].China Surfactant Detergent & Cosmetics, 2025, 55(4): 495-507.
Tab. 2
Performance of representative foaming agents based on compounded surfactants"
泡排剂体系 | 关键性能 | 参考文献 |
---|---|---|
甜菜碱Gemini/油酸酰胺基羟基磺酸基甜菜碱(T-2)-CTAB | 25 ℃、30%凝析油、25×104 mg/L矿化水、20%甲醇溶液中的携液率分别可达83%,92%,68% | [ |
CHSB-SDS | 耐温80 ℃、耐油50%、耐盐12×104 mg/L | [ |
CHSB-SDS-NH4Cl-NaNO2 | 耐温80 ℃、耐盐12×104 mg/L,产气量从0增至2×103 m3/d | [ |
CHSB-SDS-氟碳表面活性剂(PFBS) | 耐温80 ℃、耐油50%、耐盐20×104 mg/L,增产26.35×104 m3 | [ |
AOS-CHSB-Gemini季铵盐(CAGB) | 耐温90 ℃、耐油50%、耐盐15×104 mg/L | [ |
月桂/棕榈酰胺丙基甜菜碱-月桂/棕榈Gemini季铵盐-月桂酰肌氨酸钠 | 耐温90 ℃、耐油30%、耐盐26×104 mg/L | [ |
烷基聚醚羧酸盐-烷基聚醚甜菜碱 | 温度140 ℃、煤油含量50%、盐度17.5×104 mg/L,携液率高于50% | [ |
Tab. 3
Performance of representative foaming agents based on surfactant-nanoparticle/polymer for gas well deliquification"
泡排剂体系 | 关键性能 | 现场试验效果 | 参考文献 |
---|---|---|---|
阴离子-两性离子-氟碳表面活性剂-改性纳米SiO2 | 耐温150 ℃、耐油30%、耐盐25×104 mg/L、抗H2S浓度0.04% | [ | |
Gemini阴离子表面活性剂-改性纳米SiO2 | 耐温150 ℃、耐油50%,耐盐25×104 mg/L、抗H2S质量浓度2 000 mg/L | 平均产气从7 256 m3/d增加到11 329 m3/d | [ |
Gemini表面活性剂-纳米SiO2 | 耐温160 ℃、耐油40%、耐盐25×104 mg/L,抗H2S质量浓度100 mg/L、耐CO2 100% | 应用8685井次,产气量增加62.48%、油套压差降低18.9% | [ |
阴离子-两性离子-氟碳表面活性剂-改性纳米SiO2 | 耐温150 ℃、耐油30%、耐盐25×104 mg/L、抗H2S质量浓度2 000 mg/m3 | 生产时率提高2.31%、产气量增加509 m3/d | [ |
磺酸盐表面活性剂AS-1-802-疏水改性纳米SiO2 | 在90 ℃、20%柴油、10×104 mg/L矿化度、20%甲醇条件下,携液率达到61% | [ | |
SDS-CHSB-疏水纳米片g-C3N4 | 耐温90 ℃、耐油20%、耐盐10×104 mg/L | [ | |
CPB-聚丙烯酰胺(PAM) | 在175 ℃、10×104 mg/L矿化度,稳定性良好,起泡性及稳定性基本不受H2S分压的影响,携液量为167 mL/15 min | [ | |
可降解聚合物(PBAT)-CPB-有机蒙脱土(OMM) | 耐温30 ℃、耐盐25×104 mg/L,在96 h内可持续生成稳定的泡沫 | [ |
Tab. 4
Performance of representative supramolecular foaming agents for gas well deliquification"
超分子泡排剂体系 | 关键性能 | 参考文献 |
---|---|---|
月桂酰胺丙基二甲胺-柠檬酸-AOS-LAPB | 耐温90 ℃、耐油40%、耐盐5×104 mg/L、耐甲醇50% | [ |
月桂酰胺丙基二甲胺-L-天冬氨酸-月桂酰肌氨酸钠(LSS)-LAPB | 耐温90 ℃、耐油50%、耐盐10×104 mg/L | [ |
LATC-LAPB-SLG-LA | 耐温90 ℃、耐油50%、耐盐33×104 mg/L、耐甲醇50% | [ |
Tab. 5
Performance of representative stimuli-responsive foaming agents for gas well deliquification"
泡排剂体系 | 关键性能 | 参考文献 |
---|---|---|
温敏Gemini表面活性剂(GACB) | 耐温120 ℃ | [ |
热敏阴离子聚合物-DTAB | 耐温80 ℃、耐盐5×104 mg/L | [ |
pH响应表面活性剂 | 耐盐20×104 mg/L,pH降低泡沫性能减弱,pH升高泡沫性能增强 | [ |
CO2响应表面活性剂二甲氨基十一烷基硫酸钠(11-DUSNa)-CHSB | 耐温100 ℃、耐二价盐(Ca2+,Mg2+)3.2 mol/L,通入CO2,起泡性得到抑制;通入N2或加入NaOH,起泡性得到恢复 | [ |
[1] | 曹光强, 姜晓华, 李楠, 等. 产水气田排水采气技术的国内外研究现状及发展方向[J]. 石油钻采工艺, 2019, 41(5): 614-623. |
[2] | Kelland Malcolm A. Production chemicals for the oil and gas industry[M]. Second Edition. Boca Raton: CRC Press-Taylor & Francis, 2014. |
[3] | Yang Jiang, Jovancicevic Vladimir, Ramachandran Sunder. Foam for gas well deliquification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309(1): 177-181. |
[4] | Sun Y Q, Zhang Y P, Liu Q W, et al. Research progress on new highly efficient foam drainage agents for gas wells (A review)[J]. Petroleum Chemistry, 2023, 63(9): 1119-1131. |
[5] | 田雨露, 王纪伟, 李加玉. 泡沫排水用起泡剂的应用进展[J]. 油田化学, 2021, 38(2): 368-373. |
[6] | Lee Yeongbeom, Baek Kye Hyun, Choe Kunhyung, et al. Development of mass production type rigid polyurethane foam for LNG carrier using ozone depletion free blowing agent[J]. Cryogenics, 2016, 80: 44-51. |
[7] | Hajimohammadi Ailar, Ngo Tuan, Mendis Priyan. How does aluminium foaming agent impact the geopolymer formation mechanism?[J]. Cement and Concrete Composites, 2017, 80: 277-286. |
[8] | Xiao Bao, Ye Zhongbin, Wang Junqi, et al. Law and mechanism study on salt resistance of nonionic surfactant (alkyl glycoside) foam[J]. Energies, 2022, 15(20): 7684. |
[9] | Wang Hetang, Guo Wangbiao, Zheng Chuanbao, et al. Effect of temperature on foaming ability and foam stability of typical surfactants used for foaming agent[J]. Journal of Surfactants and Detergents, 2017, 20(3): 615-622. |
[10] | Yu Xiaoyang, Miao Xuyang, Li Huan, et al. Influence of seawater on interfacial properties, foam performance and aggregation behaviour of fluorocarbon/hydrocarbon surfactant mixtures[J]. Journal of Molecular Liquids, 2022, 359: 119297. |
[11] | Sultan Kedir Abduljelil, Solbakken Jonas Stensbye, Aarra Morten Gunnar. Foamability and stability of anionic surfactant-anionic polymer solutions: Influence of ionic strength, polymer concentration, and molecular weight[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632: 127801. |
[12] |
Gao Minlan, Lei Fuqiang, Liu Qiaona, et al. The effect of alkyl chain length in quaternary ammonium cationic surfactants on their foaming properties[J]. Russian Journal of Physical Chemistry A, 2019, 93(13): 2735-2743.
doi: 10.1134/S0036024419130090 |
[13] |
Jia Xinru, Wei Ran, Xu Bo, et al. Green synthesis, surface activity, micellar aggregation, and foam properties of amide quaternary ammonium surfactants[J]. ACS Omega, 2022, 7(51): 48240-48249.
doi: 10.1021/acsomega.2c06353 pmid: 36591167 |
[14] | Alzobaidi Shehab, Da Chang, Tran Vu, et al. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants[J]. Journal of Colloid and Interface Science, 2017(488): 79-91. |
[15] | Da Chang, Alzobaidi Shehab, Jian Guoqing, et al. Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150 ℃ in high salinity brine[J]. Journal of Petroleum Science and Engineering, 2018. |
[16] | Lai Nanjun, He Yaoling, Zhang Xiaochen, et al. Synthesis and performance evaluation of temperature and salt-resistant foam drainage agent XY-1[J]. Arabian Journal for Science and Engineering, 2023, 48(7): 8911-8923. |
[17] | Wu Junwen, Jia Wenfeng, Zhang Rusheng, et al. The development and field test of high efficient foam unloading agent based on Gemini surfactant and nanomaterials [G]// SPE International Conference on Oilfield Chemistry. Galveston, Texas, USA:2019. |
[18] | 谢郢, 赖璐. 两性双子表面活性剂的合成及性能研究[J]. 日用化学工业, 2015, 45(8): 421-424. |
[19] | 邹华, 刘华荣, 梅平. 磺酸盐型Gemini表面活性剂复配体系的黏度性质研究[J]. 日用化学工业, 2016, 46(9): 502-506. |
[20] | 王磊, 石浪浪, 赖小娟, 等. 一种甜菜碱型Gemini表面活性剂的制备及其作为泡排剂主剂的性能评价[J]. 应用化工, 2018, 47(10): 2169-2173. |
[21] | Kumar Vinod, Pal Nilanjan, Jangir Anil Kumar, et al. Dynamic interfacial properties and tuning aqueous foamability stabilized by cationic surfactants in terms of their structural hydrophobicity, free drainage and bubble extent[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588: 124362. |
[22] | Li Chunling, Wang Zhikun, Wang Wendong, et al. Temperature and salt resistant CO2 responsive gas well foam: Experimental and molecular simulation study[J]. Applied Surface Science, 2022, 594: 153431. |
[23] |
Cuenca Victor Ezequiel, Marcos Marcos Fernández-Leyes, Falcone R Dario, et al. Interfacial dynamics and its relations with “negative” surface viscosities measured at water-air interfaces covered with a cationic surfactant[J]. Langmuir, 2019, 35(25): 8333-8343.
doi: 10.1021/acs.langmuir.9b00534 pmid: 31124690 |
[24] |
Roncoroni Miguel Angel, Romero Pedro, Montes Jesús, et al. Enhancement of a foaming formulation with a zwitterionic surfactant for gas mobility control in harsh reservoir conditions[J]. Petroleum Science, 2021, 18(5): 1409-1426.
doi: 10.1016/j.petsci.2021.08.004 |
[25] |
Qu Chaochao, Wang Ji, Yin Hongyao, et al. Condensate oil-tolerant foams stabilized by an anionic-sulfobetaine surfactant mixture[J]. ACS Omega, 2019, 4(1): 1738-1747.
doi: 10.1021/acsomega.8b02325 pmid: 31459431 |
[26] | Zhou Hao, Qu Chaochao, Lu Guangliang, et al. Deliquification of low-productivity natural gas wells with in situ generated foams and heat[J]. Energy & Fuels, 2021, 35(12): 9873-9882. |
[27] |
李祖友, 唐雷, 殷鸿尧, 等. 川西老区中浅层新型泡排药剂研发与应用[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 176-187.
doi: 10.11885/j.issn.1674-5086.2022.01.26.01 |
[28] |
瞿超超, 刘正中, 殷鸿尧, 等. 新型排水采气用抗凝析油泡排剂[J]. 石油学报, 2020, 41(7): 865-874.
doi: 10.7623/syxb202007008 |
[29] | 张志升, 沈产量, 李建勋, 等. 甜菜碱/AOS/Gemini季铵盐三元复合型泡排剂的研制与性能评价[J]. 日用化学工业(中英文), 2024, 54(3): 239-249. |
[30] | Dong Sanbao, Fan Jiabao, Lv Hongmiao, et al. Excellent condensate and salt-resistant foam by anionic-zwitterionic-cationic Gemini surfactants compounds for gas well deliquification[J]. Journal of Surfactants and Detergents, 2024, 27(1): 135-145. |
[31] | 徐海民. 新型复合泡排剂抗油性能研究与应用[J]. 断块油气田, 2022, 29(3): 422-426. |
[32] | Yu Ying, García Brayan F, Saraji Soheil. Surfactant viscoelasticity as a key parameter to improve supercritical CO2 foam stability/foamability and performance in porous media[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 282: 104311. |
[33] | Li Songyan, Li Zhaomin, Wang Peng. Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles[J]. Industrial & Engineering Chemistry Research, 2016, 55: 1243-1253. |
[34] |
武俊文, 雷群, 熊春明, 等. 适用于深层产水气井的纳米粒子泡排剂[J]. 石油勘探与开发, 2016, 43(4): 636-640.
doi: 10.11698/PED.2016.04.17 |
[35] |
熊春明, 曹光强, 张建军, 等. 适应中国主要气田的纳米粒子泡排剂系列[J]. 石油勘探与开发, 2019, 46(5): 966-973.
doi: 10.11698/PED.2019.05.16 |
[36] | 杨易骏, 王锦昌, 周瑞立, 等. 纳米粒子泡排剂在大牛地低含硫气井中的应用及评价[J]. 石油化工应用, 2019, 38(7): 20-25. |
[37] | Sheng Youjie, Xue Menghua, Wang Yubo, et al. Aggregation behavior and foam properties of the mixture of hydrocarbon and fluorocarbon surfactants with addition of nanoparticles[J]. Journal of Molecular Liquids, 2021, 323: 115070. |
[38] | Wang Jing, Chen Yv, Wang Shun, et al. Investigations on the influencing mechanisms of SiO2 nanoparticles on foam stability[J]. Energy & Fuels, 2021, 35(24): 20016-20025. |
[39] | Xu Long, Rad Mina Doroudian, Telmadarreie Ali, et al. Synergy of surface-treated nanoparticle and anionic-nonionic surfactant on stabilization of natural gas foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550: 176-185. |
[40] | 马超, 谷文, 伍希林, 等. 疏水纳米二氧化硅强化泡排剂的制备及性能[J]. 长江大学学报(自然科学版), 2024: 1-8. |
[41] | Lai Lidan, Zhang Tailiang, Zheng Cunchuan. Study of foam drainage agent based on g-C3N4 nanosheets reinforced stabilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657: 130607. |
[42] | Zhang Chunquan, Xue Yan, Huang Dan, et al. Design and fabrication of anionic/cationic surfactant foams stabilized by lignin-cellulose nanofibrils for enhanced oil recovery[J]. Energy & Fuels, 2020, 34(12): 16493-16501. |
[43] | 惠小敏, 张庆生, 王树涛, 等. 甜菜碱/聚合物复配泡排剂性能研究[J]. 油田化学, 2016, 33(2): 316-318. |
[44] | Yang Jiang, Fan Rongrong, He Xiujuan, et al. Slow-releasing foam sticks based on degradable polymer nanocomposite for gas well deliquification[J]. Geoenergy Science and Engineering, 2024, 233: 212582. |
[45] | Li Tong, Fang Jichao, Jiao Baolei, et al. Study on a novel gelled foam for conformance control in high temperature and high salinity reservoirs[J]. Energies, 2018, 11(6): 1364. |
[46] | Chen Shaohua, Han Ming, Alsofi Abdulkareem M. Synergistic effects between different types of surfactants and an associating polymer on surfactant-polymer flooding under high-temperature and high-salinity conditions[J]. Energy & Fuels, 2021, 35(18): 14484-14498. |
[47] | Wu Xuepeng, Huang Yongping, Fang Sisi, et al. CO2-responsive smart wormlike micelles based on monomer and “pseudo” gemini surfactant[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 348-354. |
[48] | Ye Shengfeng, Zhai Zhaolan, Shang Shibin, et al. pH-Induced hydrogels and viscoelastic solutions constructed by a Rosin-Based Pseudo-Gemini surfactant[J]. Journal of Molecular Liquids, 2022, 361: 119445. |
[49] | Zhang Yongmin, An Pengyun, Qin Anni, et al. Self-assembly and rheological behaviors of dynamic pseudo-oligomeric surfactant[J]. Colloid and Polymer Science, 2016, 294(11): 1743-1754. |
[50] | Han Weiwei, Fan Jiabao, Qiang Taotao, et al. A novel salt and condensate-resistant foam co-stabilized by mixtures of surfactants and citric acid for gas well deliquification[J]. Journal of Molecular Liquids, 2023, 385: 122426. |
[51] | Dong Sanbao, Fan Jiabao, Liu Chenwei, et al. Experimental and computational investigations on foaming properties of anionic-nonionic-zwitterionic surfactants and amino acid compounds to address the liquid loading of natural gas wells[J]. Journal of Molecular Liquids, 2023, 382: 122016. |
[52] | Han Weiwei, Lv Hongmiao, Kar Taniya, et al. Experimental studies and computational exploration on an exceptionally salt/condensate resistant gas well foaming mixture compromising amino-betaine-ammonium surfactants and dodecanol[J]. Journal of Molecular Liquids, 2024, 397: 124048. |
[53] |
Jia Wenfeng, Xian Chenggang, Wu Junwen. Temperature-sensitive foaming agent developed for smart foam drainage technology[J]. RSC Advances, 2022, 12(36): 23447-23453.
doi: 10.1039/d2ra04034d pmid: 36090426 |
[54] | Li Jia, Wen Ming, Yang Jian, et al. Development and characterization of thermo-sensitive biomass-based smart foam drainage gas recovery treatment agent[J]. Geoenergy Science and Engineering, 2023, 230: 212263. |
[55] | Li Jia, Wen Ming, Lei Lei, et al. Development and analysis of pH-sensitive surfactants for enhancing foam drainage gas retrieval[J]. Journal of Molecular Liquids, 2024, 396: 124106. |
[56] | Li Chunlin, Wang Zhikun, Wang Wendong, et al. Temperature and salt resistant CO2 responsive gas well foam: Experimental and molecular simulation study[J]. Applied Surface Science, 2022, 594: 153431. |
[1] | Niu Qiqi,Lv Qichao,Dong Zhaoxia,Zhang Fengfan,Wang Hongbo. Research progress on the properties of foam systems containing wormlike micelles [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 915-924. |
[2] | Guo Hua,Xu Jin,He Yunping,Xu Hujun. Effects of potassium cocoyl hydrolyzed oat protein on the performance of the amino acid facial cleanser [J]. China Surfactant Detergent & Cosmetics, 2022, 52(12): 1307-1313. |
[3] | Xue Hui,Yang Panpan,Lv Xuyang,Han Dan,Chen Jinlong,Jiang Ligang. Properties and development trend of commonly used cosmetic powder for improving skin feeling [J]. China Surfactant Detergent & Cosmetics, 2022, 52(1): 77-83. |
[4] | TANG Xiao-qin, CHEN Ming-hua, LI Fang-fang, REN Tian-hui. Performance of facial cleanser impacted by partial acidification of potassium cocoyl glycinate [J]. China Surfactant Detergent & Cosmetics, 2017, 47(7): 403-407. |
[5] | ZOU Xin-yuan,LUO Wen-li,MA De-sheng,ZHOU Xin-yu,TIAN Mao-zhang. Synthesis and performance of decyl polyglycoside sulfonate for foam blended flooding agent [J]. China Surfactant Detergent & Cosmetics, 2016, 46(6): 320-323. |
[6] | YUAN Min-jia, DONG Chao, SHEN Pei-lin, LU Hai-wei, WANG Jin-shuang, FANG Bo, GUO Yi-guang. Study on properties of self-thickening system composed of amphoteric surfactant and amino-acid based anionic surfactant [J]. China Surfactant Detergent & Cosmetics, 2015, 45(1): 11-16. |
[7] | LIU Yuan-fei, HU Jun, ZHAO Li, XU Bao-cai, HAN Fu. Performance and applications of surfactants (Ⅺ) Foaming action of surfactant and its applications [J]. China Surfactant Detergent & Cosmetics, 2014, 44(11): 605-610. |
|