China Surfactant Detergent & Cosmetics ›› 2021, Vol. 51 ›› Issue (2): 153-160.doi: 10.3969/j.issn.1001-1803.2021.02.012
• Reviews • Previous Articles Next Articles
LI Hui-ke1(),FENG Nan2,WANG Wen-bo2,LI Jun-xiang3,4,HE Cong-fen1(
)
Received:
2020-07-29
Revised:
2021-01-18
Online:
2021-02-22
Published:
2021-02-22
Contact:
Cong-fen HE
E-mail:15623500059@163.com;hecf@th.btbu.edu.cn
CLC Number:
LI Hui-ke,FENG Nan,WANG Wen-bo,LI Jun-xiang,HE Cong-fen. The mechanism of skin glycation reaction, influencing factors and the development status of anti-glycation in the cosmetics industry[J].China Surfactant Detergent & Cosmetics, 2021, 51(2): 153-160.
Tab. 1
Anti-glycation active ingredient in cosmetics and its way of action"
活性成分 | 作用途径 |
---|---|
硫胺素HCl(维生素B1) | 转酮糖酶(transketolase,TKT)的辅助因子,TKT戊糖磷酸途径(pentose phosphate pathway, PPP)的关键酶,PPP途径主要产物NADPH可抑制AGEs产生[ |
烟酰胺(维生素B3) | 烟酰胺腺嘌呤二核苷酸(NAD)及其磷酸盐衍生物(NADP)的还原形式(NADH和NADPH)可抑制Krebs和ETC。从而减少ROS生成,最终降低AGEs的生成[ |
吡哆胺(维生素B6) | 一种有效的AGEs形成抑制剂,其作用强于氨基胍[ |
维生素C | 具有非特异的金属螯合活性,可以通过阻断ROS和自由的过渡金属离子来间接抑制AGEs的形成[ |
肌肽 | 减少自由基的水平(肌肽是有效的电子供体,具有金属离子螯合能力,可与金属形成络合物并限制金属的反应活性);与蛋白质的羰基进行反应(肌肽上的氨基与氨基酸羰基发生交联,或通过受体(如RAGE)清除巨噬细胞上的修饰蛋白)[ |
绿原酸 | 绿原酸是由某些反式肉桂酸和奎尼酸所形成的一族酯,主要针对甲基乙二醛,以浓度依赖的方式抑制美拉德反应,最终抑制AGEs的生成[ |
硫辛酸 | 保护蛋白质免于葡萄糖诱导的糖基化反应,同时通过减少蛋白质的羰基数目、增加硫醇数目使得蛋白质免受氧化损伤的影响[ |
Tab. 2
Natural product raw materials with anti-glycation effects and their effects on AGEs"
天然产物 | 主要化合物 | 主要来源 | 对于AGEs的影响 |
---|---|---|---|
姜黄素[ | 肉桂酸 | 姜黄 | 降低AGEs的累积量;胶原蛋白交联下降;防止AGEs诱导NF‐κB 和VEGF通路 |
儿茶素[ | 黄烷醇 | 绿茶 | 降低AGEs的生成量 |
槲皮素[ | 黄烷醇 | 洋葱、甘蓝 | 降低AGEs的生成量;抑制二羰基化合物诱导的蛋白质糖基化 |
山柰酚[ | 黄烷醇 | 大蒜 | 降低AGEs的累积量;蛋白交联下降 |
柚皮素[ | 二氢黄酮 | 柑橘类水果、番茄 | 抑制AGEs的形成;抑制AGEs诱导的氧化应激和炎症 |
橙皮素[ | 二氢黄酮 | 柠檬、蜜桔 | 乙二醛酶-1的活性升高;降低AGEs的生成量;降低RAGE蛋白水平;抑制AGEs-RAGE轴 |
芹菜素[ | 黄酮 | 欧芹、芹菜、洋甘菊茶 | 抑制AGEs诱导ROS的产生过程;降低RAGE蛋白水平 |
染料木素[ | 异黄酮 | 羽扇豆、蚕豆、大豆 | 抑制AGEs的形成;降低RAGE蛋白水平;乙二醛酶-1、2的活性升高 |
羟基酪醇[ | 苯乙醇 | 橄榄叶、橄榄油 | 降低AGEs的生成量;抑制蛋白质羰基化 |
白藜芦醇[ | 二苯乙烯 | 葡萄、红酒、浆果、花生 | 降低AGEs的生成量;抑制蛋白质羰基化;晚期氧化蛋白产物(AOPP)含量下降 |
Tab. 3
Anti-glycation cosmetic products on the market and their efficacy claims"
品牌 | 产品 | 抗糖化成分 | 宣称 |
---|---|---|---|
悦木之源 | 灵芝焕能精华水 | 赤芝提取物、桦褐孔菌菌核提取物 | 保护细胞和蛋白质免受氧化侵害,并能中和细胞中有害金属离子,抵抗外界污染;改善暗沉无光,令肌肤细腻透亮 |
修丽可 | 修丽可紧致塑颜眼部精华霜 | 欧洲越桔果提取物、Pro-ylane玻色因、5,7-二羟基黄酮、棕榈酰四肽-7、二肽-2 | 让眼周柔软通透、提亮眼周;补充水分、减退细纹鱼尾纹;减退黑眼圈,紧致眼周 |
美帕 | 美帕瑞士胶原青春精华液 | 肌肽、羧甲基β-葡聚糖钠、水解小麦蛋白、水飞蓟籽油、水飞蓟果提取物、三肽-1 | 为肌肤注入能量,阻止肌肤糖化而引起的老化,补充胶原蛋白、弹性蛋白,减少细纹和干纹,令肌肤恢复弹性紧实 |
POLA宝丽 | B.A极光幻彩精华液 | 欧蓍草提取物、苦参根提取物、刺梨果提取物、紫草提取物、魁蒿叶提取物 | 均匀提亮肤色,肌肤呈现由内而外的饱满通透光泽;帮助清洁角质层和真皮层堆积的AGEs,改善肌肤枯黄、暗沉 |
HomeFacialPro | 肌肽原液 | 肌肽、阿魏酸、积雪草叶提取物、甲基硅烷醇甘露糖醛酸酯 | 包裹肌肤内多余糖分,代替胶原蛋白与糖分发生反应,保护胶原蛋白不被糖化,肌肤紧致透亮;改善暗沉黄气;修护糖化初期胶原蛋白 |
理肤泉 | 抗糖化抗氧化精华 | 肌肽、花青素、茶多酚 | 抗糖化、减轻鱼尾纹、提亮肤色 |
Isomers | Haa肌肽虾青素双效精华 | 脱羧肌肽HCl、肌肽、虾青素 | 抗糖化、抗氧化;改善肌肤粗糙、偏黄问题;修护屏幕蓝光辐射损伤;清除自由基 |
[1] | Rabbani N, Al-Motawa M, Thornalley P J. Protein glycation in plants: An under-researched field with much still to discover[J]. International Journal of Molecular Sciences, 2020,21(11) : 39-42. |
[2] |
Yu Y, Thorpe S R, Jenkins A J, et al. Advanced glycation end products and methionine sulphoxide in skin collagen of patients with type 1 diabetes[J]. Diabetologia, 2006,49(10) : 2488-2498.
pmid: 16955213 |
[3] | Liu Chuanbo, Yang Jianfei, Lu Shuliang. Accumulation of skin type I collagen-linked advanced glycation end products in patients with diabetic foot ulcers[J]. Chinese General Practice, 2019 (23) : 2820-2825. |
[4] | Zeng Wenwen, Liu Yuhuan, Ruan Rongsheng, et al. Research progress in food safety issue caused by Maillard reaction[J]. Science and Technology of Food Industry, 2011,32(7) : 398-401, 405. |
[5] | Yang Diaodiao, He Zhiyong, Qin Fang, et al. Research progress of the effects of Maillard reaction on flavor and quality of products as well as derivatized harmful substances[J]. Journal of Food Safety & Quality, 2017 (3) : 134-141. |
[6] | Perrone A, Giovino A, Benny J, et al. Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects[J]. Oxidative Medicine and Cellular Longevity, 2020 (3) : 1-18. |
[7] | Carracedo A, Cantley C, Pandolfi P. Cancer metabolism: fatty acid oxidation in the limelight[J]. Nature Reviews Cancer, 2013,13:227-232. |
[8] | Grimm S, Ott C, Hörlacher M, et al. Advanced glycation end product induced formation of immunoproteasomes: involvement of RAGE and Jak2/STAT1[J]. Biochemical Journal, 2012,448:127-139. |
[9] |
Ighodaro O M. Molecular pathways associated with oxidative stress in diabetes mellitus[J]. Biomedicine & Pharmacotherapy, 2018,108:656-662.
pmid: 30245465 |
[10] | Cepas V, Collino M, Mayo J C, et al. Redox signaling and advanced glycation end products (AGEs) in diet-related diseases[J]. Antioxidants Basel, 2020,9(2) : 142-162. |
[11] | Prasad K, Dhar I, Caspar-Bell G. Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease[J]. International Journal of Angiology, 2015,24:75-80. |
[12] |
Slominski A T, Zmijewski M A, Plonka P M, et al. How UV light touches the brain and endocrine system through skin, and why[J]. Endocrinology, 2018,159:1992-2007.
pmid: 29546369 |
[13] | Mori Y, Aki K, Kuge K, et al. UVB-irradiation enhances the racemization and isomerizaiton of aspartyl residues and production of Nε-carboxymethyl lysine (CML) in keratin of skin[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2011,879(29) : 3303-3309. |
[14] | Crisan M, Taulescu M, Crisan D, et al. Expression of advanced glycation end-products on sun-exposed and non-exposed cutaneous sites during the ageing process in humans[J]. Plos One, 2013,8(10) : 75003. |
[15] | Widgerow A D, Cohen S R, Fagien S. Preoperative skin conditioning: extracellular matrix clearance and skin bed preparation, a new paradigm[J]. Aesthetic Surgery Journal, 2019,39:103-111. |
[16] | Yang Ji’e, Zhang Feng, Shi Huairui, et al. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury[J]. Faseb Journal, 2019,33:14410-14422. |
[17] | Lee E J, Kim J Y, Oh S H. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs[J]. Scientific Reports, 2016,6(13) : 27848. |
[18] | Moldogazieva N T, Mokhosoev I M, Mel'Nikova T I, et al. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases[J]. Oxidative Medicine and Cellular Longevity, 2019,2019:1-14. |
[19] | Peng Liwei, Lai Jixiang, He Congfen, et al. Research progress of non-enzymatic glycosylation and skin aging[J]. Chinese Journal of Gerontology, 2010,30(20) : 3027-3029. |
[20] |
Chang K C, Shieh B, Petrash J M. Role of aldose reductase in diabetes-induced retinal microglia activation[J]. Chemico-Biological Interactions, 2019,302:46-52.
doi: 10.1016/j.cbi.2019.01.020 pmid: 30682331 |
[21] |
Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biology, 2014,2:411-429.
doi: 10.1016/j.redox.2013.12.016 pmid: 24624331 |
[22] |
Zhang Qian, Lenardo M J, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology[J]. Cell, 2017,168:37-57.
pmid: 28086098 |
[23] |
Deng Xian, Huang Wei, Peng Juan, et al. Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via inhibiting ROS-NLRP3 inflammasome signaling[J]. Inflammation, 2018,41:260-275.
doi: 10.1007/s10753-017-0685-3 pmid: 29098483 |
[24] | Yu Wenzhe, Tao Mengru, Zhao Yueliang, et al. 4’-methoxyresveratrol alleviated age-induced inflammation via rage-mediated NF-κB and NLRP3 inflammasome pathway[J]. Molecules, 2018,23(6) : 1447. |
[25] | Aldini G, Vistoli G, Stefek M, et al. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products[J] . Free Radical Research, 2013,47(1) : 93-137. |
[26] | Bartáková V, Pleskačová A, Kuricová Katarína, et al. Dysfunctional protection against advanced glycation due to thiamine metabolism abnormalities in gestational diabetes[J]. Glycoconjugate Journal, 2016,33(4) : 1-8. |
[27] |
Khmaladze I, Österlund C, Smiljanic S, et al. A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes[J]. Journal of Cosmetic Dermatology, 2020,19:1415-1425.
doi: 10.1111/jocd.13176 pmid: 31584241 |
[28] |
Bissett D L, Oblong J E, Berge C A. Niacinamide: A B vitamin that improves aging facial skin appearance[J]. Dermatologic Surgery, 2010,31:860-866.
doi: 10.1111/j.1524-4725.2005.31732 pmid: 16029679 |
[29] | Nenna A, Spadaccio C, Lusini M, et al. Basic and clinical research against advanced glycation end products (AGEs): new compounds to tackle cardiovascular disease and diabetic complications[J]. Recent Advance Cardiovasc Drug Discover, 2015,10:10-33. |
[30] |
Metz T O, Alderson N L, Thorpe S R, et al. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications[J]. Archives of Biochemistry and Biophysics, 2003,419:41-49.
pmid: 14568007 |
[31] |
Ghodsi R, Kheirouri S. Carnosine and advanced glycation end products: a systematic review[J]. Amino Acids, 2018,50:1177-1186.
doi: 10.1007/s00726-018-2592-9 pmid: 29858687 |
[32] |
Bains Y, Gugliucci A, Caccavello R. Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid[J]. Fitoterapia, 2017,120:1-5.
doi: 10.1016/j.fitote.2017.05.003 pmid: 28527897 |
[33] | Ghelani H, Razmovski N V, Pragada R R, et al. Attenuation of glucose-induced myoglobin glycation and the formation of advanced glycation end products (AGEs) by (R)-α-lipoic acid in vitro[J]. Biomolecules, 2018,8(1) : 9. |
[34] |
Aggarwal B B, Sundaram C, Malani N, et al. Curcumin: the Indian solid gold[J]. Advances in Experimental Medicine and Biology, 2007,595:1-75.
doi: 10.1007/978-0-387-46401-5_1 pmid: 17569205 |
[35] |
Jain S K, Rains J, Jones K. Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels[J]. Free Radical Biology and Medicine, 2006,41:92-96.
pmid: 16781457 |
[36] |
Sharma S, Kulkarni S K, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats[J]. Clinical and Experimental Pharmacology and Physiology, 2006,33:940-945.
doi: 10.1111/j.1440-1681.2006.04468.x pmid: 17002671 |
[37] | Chen Q, Wang T, Li J, et al. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD)[J]. Nutrients, 2017,31: 92 (2) : 96. |
[38] |
Nishiyama T, Mae T, Kishida H, et al. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice[J]. Journal of Agricultural and Food Chemistry, 2005,53(4) : 959.
doi: 10.1021/jf0483873 pmid: 15713005 |
[39] |
Babu P V A, Sabitha K E, Shyamaladevi C S. Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats[J]. Food and Chemical Toxicology, 2008,46:280-285.
pmid: 17884275 |
[40] |
Dearlove R P, Greenspan P, Hartle D K, et al. Inhibition of protein glycation by extracts of culinary herbs and spices[J]. Journal of Medicinal Food, 2008,11:275-281.
doi: 10.1089/jmf.2007.536 pmid: 18598169 |
[41] | Frei B, Higdon J V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies[J]. Journal of Nutrition, 2003,133(10) : 3275. |
[42] |
Kashima M. Effects of catechins on superoxide and hydroxyl radical[J]. Chemical & Pharmaceutical Bulletin, 1999,47:279-283.
doi: 10.1248/cpb.47.279 pmid: 10071858 |
[43] |
Bhuiyan M N I, Mitsuhashi S, Sigetomi K, et al. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species[J]. Bioscience, Biotechnology, and Biochemistry, 2017,81:882-890.
doi: 10.1080/09168451.2017.1282805 pmid: 28388357 |
[1] | Jingxuan Liu, Jianming Jin, Hua Wu. Botanical cosmetic ingredients (VII)Research and development of plant antifungal [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 259-266. |
[2] | Wu Bi, Xiaohong Pan, Xiaoqin Tu, Shuai Yin, Hui Sun. Analysis of the mechanism of anti-sensitive skin effect of cosmetic raw material Stephania tetrandra based on network pharmacology [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 305-312. |
[3] | Yaoyao Li. Study on the anti-aging and antioxidant effects of isosinensetin [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 313-319. |
[4] | Liyuan Zhang, Linqi Yan, Qiaoyuan Cheng, Lvye Qi, Rong Wang, Liuqian Huang. Determination of 14 kinds of α-hydroxy acids and hydroxy esters in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 353-359. |
[5] | Wei Xu, Po Zou, Changyu Li, Ming Yang, Yan Lu, Huiliang Li. Determination of 36 stimulants in cosmetics by ultra performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 360-368. |
[6] | Kangfu Zhou, Yixuan Zhi, Feifei Wang, Yazhuo Shang. New emulsion system and its application in cosmetics (VI)Microemulsion [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 139-148. |
[7] | Zhen Xie, Wei Huang, Jinsong Zhang, Shuhuai Chen, Linji Qu, Rong Kuang. Study on biomarkers of corneal injury in the evaluation of eye irritation of cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 161-167. |
[8] | Xiaohong Pan, Ziqi Gao, Zhen Chen, Shuai Yin, Haiping Huang, Bin Hu. Discussion on the current situation of research and management on the stability of cosmetic products in China [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 201-208. |
[9] | Li Lu, Fang Fang, Youlong Feng, Ling Cao. Screening for illegal addition of sulfonamides in cosmetic products using ultra-performance liquid chromatographytriple quadrupoletandem mass spectrometry with precursor ion scanning [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 216-223. |
[10] | Ren Wang, Yuanyang Wu, Jia Qiao, Linqi Yan, Cen Chen, Liyuan Zhang. Study on phenoxyethanol content in children’s cosmetics on the mark and preliminary risk assessment [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 224-230. |
[11] | Yixiang Lu, Liting Wu, Jimin Jiang, Hailu Chen, Xuan Huang. Determination of tolnaftate and liranaftate in cosmetics by high performance liquid chromatography and verification by high performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 231-238. |
[12] | Liyuan Zhang, Qiaoyuan Cheng, Cen Chen, Zehua Li, Liuqian Huang, Lvye Qi. Determination of 3 kinds of α-hydroxy acids and their esters in cosmetics by high performance liquid chromatography [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 102-106. |
[13] | Linling Lu, Hui Lu, Chunyan Min, Yefei Qian. Determination of functional components of Glycyrrhizae, Ginseng and Scutellariae in facial masks by UHPLC-MS/MS [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 107-113. |
[14] | Xu Han, Jiajia Wu, Na Wu, Yazhuo Shang. New emulsion system and its application in cosmetics (V) Janus emulsion [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 24-31. |
[15] | Feng Liu, Yuanchang Deng, Guohong Ying, Xiaowei Wang. Establishment of duplex-PCR method for rapid detection of Pluralibacter gergoviae [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 45-50. |
|