China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (2): 235-243.doi: 10.3969/j.issn.2097-2806.2025.02.013
• Reviews • Previous Articles Next Articles
Suhan Chen1,2,Xiaoyi Yang1,2,Jianbo Li1,2,*(),Xiaodan Ren1,2,Heping Zhang1,2
Received:
2024-03-05
Revised:
2025-01-22
Online:
2025-02-22
Published:
2025-02-28
Contact:
Jianbo Li
E-mail:yesridci@163.com
CLC Number:
Suhan Chen,Xiaoyi Yang,Jianbo Li,Xiaodan Ren,Heping Zhang. Research progress on preparation and application of metal phthalocyanine[J].China Surfactant Detergent & Cosmetics, 2025, 55(2): 235-243.
Tab. 1
Summary of metal phthalocyanines materials"
制备 | 应用 | 特点 | 引用文献 | |
---|---|---|---|---|
氯代酞菁钴 | 苯酐为原料在DMF溶剂中微波加热合成 | 汽油的脱硫醇 | 通过控制氯离子的取代量调控催化性能 | [ |
四羟基酞菁铝/碳纳米管复合材料 | 苯酐为原料,硝基苯为溶剂液相合成 | 燃油中乙硫醇的脱除 | 负载在碳纳米管上可增强催化活性 | [ |
N-苄基化酞菁钴四磺酰胺 | 苯酐为原料,硝基苯为溶剂液相合成 | 氧化脱硫催化剂 | 通过苄基化加强了材料的油溶性 | [ |
双核金属酞菁(Fe、Co、Zn)碳纳米管复合材料 | 邻苯二甲腈为原料,溶剂为DMAE液相合成 | 脱除模型燃油中的二苯并噻吩 | 具有良好的分散性和光催化活性 | [ |
聚合金属酞菁(Mn、Fe、Co、Ni、Cu、Zn) | 苯酐为原料,煤油为溶剂液相合成 | 脱除噻吩 | 材料催化活性随着酞菁环共轭体系增加而提高 | [ |
μ-硝基二铁四叔丁基酞菁铁 | 邻苯二甲腈为原料,正戊醇为溶剂液相合成 | 降解氯代苯酚以及含氟芳香族化合物等卤代污染物 | 能与双氧水生成使全氟芳烃脱氟的高价二铁氧 | [ |
酞菁锌与4,6-二氨基间苯二酚二盐酸盐的共轭微孔聚合物 | 偏苯三酸酐为原料,固相合成 | 催化降解罗丹明B等的有机染料污染物 | 不易聚集、光催化活性高、易回收 | [ |
四羧基酞菁锌复合在金纳米金属硅胶 | 邻苯二甲腈为原料,正戊醇为溶剂液相合成 | 光催化降解橙黄G和甲基橙等有机污染物 | 催化完可通过简单的过滤分离 | [ |
羧基取代多核金属酞菁钴 | 偏苯三酸酐为原料,固相法合成 | 对溶液中硫化钠、硫代硫酸钠、苯酚的催化氧化 | 可在有光及无光条件下催化氧化硫化钠 | [ |
键合型六羧基双核金属酞菁 | 苯三酸酐为原料固相法制备 | 处理废水中的甲基橙 | 带有高度有序的孔道结构 | [ |
八甲氧基酞菁镍与碳纳米管复合材料 | 邻苯二甲腈为原料,亚砜为溶剂液相合成 | 催化CO2转化为CO | 负载后的酞菁镍稳定性 更高 | [ |
酞菁铜负载在炭黑上 | 邻苯二甲酸酐为原料,固相法合成 | 将CO2高选择性电化学还原为C2H4 | 通过调控催化剂结晶度可控制反应的选择性 | [ |
八烷氧基酞菁钴负载在石墨烯 | 4, 5-二氯邻苯二甲腈为原料,DMAE为溶剂液相法合成 | 催化CO2转化为CO | 烷氧基的取代可以抑制酞菁钴的聚集 | [ |
[1] | Byrne G T, Linstead R P, Lowe A R. 213. Phthalocyanines. Part Ⅱ. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide[J]. Journal of the Chemical Society (Resumed), 1934: 1017-1022. |
[2] |
Sharman W M, van Lier J E. Synthesis and photodynamic activity of novel asymmetrically substituted fluorinated phthalocyanines[J]. Bioconjugate Chemistry, 2005, 16(5): 1166-1175.
doi: 10.1021/bc0500241 pmid: 16173794 |
[3] | Aktaş A, Acar İ, Saka E T, et al. Fluoro functional groups substituted cobalt(Ⅱ), iron(Ⅱ) phthalocyanines and their catalytic properties on benzyl alcohol oxidation[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 86(3-4): 183-190. |
[4] | Shinohara H, Tsaryova O, Schnurpfeil G, et al. Differently substituted phthalocyanines: Comparison of calculated energy levels, singlet oxygen quantum yields, photo-oxidative stabilities, photocatalytic and catalytic activities[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(1-2): 50-57. |
[5] | Zheng W, Wan C Z, Zhang J X, et al. Facile synthesis of phthalocyanine at low temperature with diisopropylamide anion as nucleophile[J]. Tetrahedron Letters, 2015, 56(30): 4459-4462. |
[6] | 李静璇. 富氮吡啶基铁酞菁衍生物及其负载纤维催化活化PMS降解有机污染物的研究[D]. 杭州: 浙江理工大学, 2022. |
[7] | 杨飞. 双核金属酞菁萘的设计合成及其对锂/亚硫酰氯电池催化性能评价[D]. 西安: 西北大学, 2015. |
[8] | 蔡丽君. 新型金属酞菁聚合物的制备及性能研究[D]. 长春: 长春理工大学, 2018. |
[9] | 李敏章. 八甲基取代金属酞菁复合材料的制备及其光/电催化研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
[10] | 牛素冉. 石墨烯-双核金属酞菁复合催化剂的制备及催化氧化性能研究[D]. 青岛: 中国石油大学(华东), 2018. |
[11] | 丁翔. 磺酸基酞菁铜/聚吡咯柔性复合织物气敏传感器的研究[D]. 天津: 天津工业大学, 2018. |
[12] | 王露英. 金属酞菁复合材料的制备及其催化氧化性能研究[D]. 常州: 常州大学, 2021. |
[13] | 王秀秀. 二苯甲酮氧桥双核酞菁的合成及性能[D]. 太原: 中北大学, 2021. |
[14] | 符亚苹. 醌类桥联双核酞菁光敏染料的制备及其性能研究[D]. 太原: 中北大学, 2023. |
[15] |
Mthethwa T P, Tuncel S, Durmus M, et al. Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate[J]. Dalton Trans, 2013, 42(14): 4922-4930.
doi: 10.1039/c3dt32698e pmid: 23385542 |
[16] |
Zhou X, He X, Wei S, et al. Au nanorods modulated NIR fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine[J]. Journal of Colloid and Interface Science, 2016, 482: 252-259.
doi: S0021-9797(16)30540-9 pmid: 27505278 |
[17] | Lin D, Wang Y, Zhang Q, et al. The substituted amino group type dependent sensitivity enhancing of cationic phthalocyanine derivatives for photodynamic activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 315: 107-120. |
[18] | Znoiko S A, Akopova O B, Bumbina N V, et al. Synthesis and properties of sulfo and alkylsulfamoyl substituted CuⅡ and NiⅡ phthalocyanines bearing 1-benzotryazolyl and 4-(1-methyl-1-phenylethyl)phenoxy groups[J]. Macroheterocycles, 2014, 7(3): 287-295. |
[19] | Yucel B, Sanli B, Soylemez H, et al. Synthesis and electro-spectroelectrochemistry of ferrocenyl naphthaquinones[J]. Tetrahedron, 2011, 67(7): 1406-1421. |
[20] | 奚强, 刘常坤, 赵春芳, 等. 酞菁钴催化氧化脱硫的机理研究[J]. 石油学报(石油加工), 1998 (2): 100-102. |
[21] | Zhang J, Li J, Ren T, et al. Oxidative desulfurization of dibenzothiophene based on air and cobalt phthalocyanine in an ionic liquid[J]. RSC Advances, 2014, 4(7): 3206-3210. |
[22] | 薛科创. 一种脱硫催化剂(四羟基酞菁铝复合碳纳米管)的制备及其催化活性研究[J]. 化学工程师, 2020, 34(4): 5-8. |
[23] | Tripathi D, Negi H, Singh R K, et al. Synthesis of N-benzylated cobalt phthalocyaninetetrasulfonamide and its application in oxidative desulfurization catalysis[J]. Journal of Coordination Chemistry, 2019, 72(17): 2982-2996. |
[24] | Tian M, He Y, Zhang G. Carbon nanotubes wrapped phthalocyanine: enhanced oxidative desulfurization for dibenzothiophene in fuel[J]. Journal of Nanoparticle Research, 2021, 23(10): 223. |
[25] |
张雨帆, 谭阿敏, 田敏, 等. 聚合金属酞菁仿生催化氧化燃油脱硫性能研究[J]. 现代化工, 2021, 41(7): 118-121, 127.
doi: 10.16606/j.cnki.issn0253-4320.2021.07.025 |
[26] | Sorokin A B. From mononuclear iron phthalocyanines in catalysis to μ-nitrido diiron complexes and beyond[J]. Catalysis Today, 2021, 373: 38-58. |
[27] | Yılmaz Y. Preparation of a phthalocyanine-nanometal-coated silica microparticle conjugate as heterogeneous photocatalyst and investigation of its photocatalytic activity[J]. ChemistrySelect, 2021, 6(28): 7223-7231. |
[28] | Iliev V, Mihaylova A. Photooxidation of sodium sulfide and sodium thiosulfate under irradiation with visible light catalyzed by water soluble polynuclear phthalocyanine complexes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1): 23-30. |
[29] | 张勇. 金属酞菁多相催化剂的制备及其光催化性能研究[D]. 青岛: 中国石油大学(华东), 2017. |
[30] | Zhang X, Wang Y, Gu M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9): 684-692. |
[31] | Kusama S, Saito T, Hashiba H, et al. Crystalline copper(Ⅱ) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media[J]. ACS Catalysis, 2017, 7(12): 8382-8385. |
[32] | Choi J, Wagner P, Gambhir S, et al. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO[J]. ACS Energy Letters, 2019, 4(3): 666-672. |
[1] | Ran Wei,Yongli Yan,Bingcheng He,Hui Liu. Research progress of the multifunctional application of carbon quantum dots in oil and gas field development [J]. China Surfactant Detergent & Cosmetics, 2025, 55(2): 216-224. |
[2] | Aide Wang, Jinde Cui, Lili Liang, Linhan Zhang, Yuncan Cao, Qingrun Liu. Study on dilution stability of amino modified silicone oil softener [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 425-430. |
[3] | Shiqiong Wang, Xiaochun Liu, Yunping Lan, Xiangling Kong, Laicheng Chen, Qiuxing He. Research progress on the preparation of selenium disulfide and its application in the field of toiletries [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 467-476. |
[4] | Linghua Shen, Vincent Hubiche, Paula Lennon, Jie Zhuang, Jin Zhang, Qianjie Zhang, Wanping Zhang. Preparation and evaluation of the liquid crystal emulsion based on wax ester emulsifier [J]. China Surfactant Detergent & Cosmetics, 2024, 54(11): 1320-1329. |
[5] | Chunfang Zhu, Junbiao Li, Zhenming Xie. Application of multiple emulsions in skin care cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(10): 1243-1250. |
[6] | Kong Lingniao, Hong Zheng, Fang Yinjun. Preparation of monoglyceride by glycerolysis of glyceryl tristearate catalyzed by Ce modified MgO [J]. China Surfactant Detergent & Cosmetics, 2023, 53(5): 517-522. |
[7] | Zhan Xin, Xu Fan, Zhu Jun, He Yifan, Pei Xiaojing. Research progress on physiological action and preparations of luteolin [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 437-444. |
[8] | Zhang Chenyun, Zhang Guoxin, Shen Jinghong, Jin Jianjiao, Xu Mingxing, Xin Bingwei. Research progress of nickel-based catalysts mediated by (quasi) ionic liquids [J]. China Surfactant Detergent & Cosmetics, 2023, 53(3): 316-324. |
[9] | Song Guanjie,Wu Wenhai,Zhang Huirong,Wu Yuehang,Yi Fan,Li Li. Preparation and evaluation of ceramide ⅢB phospholipid complex [J]. China Surfactant Detergent & Cosmetics, 2023, 53(2): 149-156. |
[10] | Yan Shaowei, Gao Chang, Zuo Lina. Preparation of high concentration ginsenoside Rg3 and its application in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2023, 53(1): 24-31. |
[11] | Yu Xinqi,Sui Zhenquan,Xu Guiyun,Fan Jinshi. Common cosmetic preparation technologies (Ⅲ)Liquid, solid floating: Aerosol and spray [J]. China Surfactant Detergent & Cosmetics, 2022, 52(9): 930-936. |
[12] | Hao Yang,Wang Changyun,Fan Jianru,Feng Yun,Li Zhenqiu,Xu Guiyun,Fan Jinshi. Common cosmetic preparation technologies (Ⅱ)Powerful controlled release tool: Microencapsulation [J]. China Surfactant Detergent & Cosmetics, 2022, 52(8): 805-811. |
[13] | Feng Yun,Shi Jing,Bao Jie,Hao Yang,Xu Guiyun,Fan Jinshi. Common cosmetic preparation technologies(Ⅰ)Oil-water mixture: Emulsions [J]. China Surfactant Detergent & Cosmetics, 2022, 52(7): 696-703. |
[14] | Yu Hongmei,Zhou Feng,Hua Ping,Li Jianhua,Qian Feng. Study on preparation method of magnetic carbon-based solid acid and its application in glycoside synthesis [J]. China Surfactant Detergent & Cosmetics, 2022, 52(7): 717-723. |
[15] | Wang Mengfei,Du Lianzhi,Xu Jianghui,Bai Dongrui,Zhang Yan,Chao Jianping. Study on the synthesis of 2-heptyl chloroacetate from methyl chloroacetate by using ionic liquid as a catalyst [J]. China Surfactant Detergent & Cosmetics, 2022, 52(6): 601-605. |
|