China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (2): 209-215.doi: 10.3969/j.issn.2097-2806.2025.02.010
• Development and application • Previous Articles Next Articles
Received:
2024-04-01
Revised:
2025-01-10
Online:
2025-02-22
Published:
2025-02-28
Contact:
Ranran Dong
E-mail:dongran1987@163.com
CLC Number:
Ranran Dong,Yanhua Liu. Preparation of Moringa oleifera leaf ethanolic extract and study on its antibacterial and anti-inflammatory activities[J].China Surfactant Detergent & Cosmetics, 2025, 55(2): 209-215.
Tab. 1
Primer sequences"
Gene | Primer sequence |
---|---|
COX-2 | F: 5'-GAAGATTCCCTCCGGTGTTT-3' |
R: 5'-CCCTTCTCACTGGCTTATGTAG-3' | |
iNOS | F: 5'-GGAATCTTGGAGCGAGTTGT-3' |
R: 5'-CCTCTTGTCTTTCACCCAGTAG-3' | |
TNF-α | F: 5'-TTGTCTACTCCCAGGTTCTCT-3' |
R: 5'-GAGGTTGACTTTCTCCTGGTATG-3' | |
IL-1β | F: 5'-GAGGACATGAGCACCTTCTTT-3' |
R: 5'-GCCTGTAGTGCAGTTGTCTTA-3' | |
IL-6 | F: 5'-GTCTGTAGCTCATTCTGCTCTG-3' |
R: 5'-GAAGGCAACTGGATGGAAGT-3' | |
β-actin | F: 5'-GTGCCGCCTGGAGAAACCT-3' |
R: 5'-AAGTCGCAGGAGACAACC-3' |
Tab. 2
Diameter data of antibacterial zone in MOLEE treatment groups with different mass concentrations"
ρ(MOLEE)/(μg/mL) | Antimicrobial zone diameter/mm | |
---|---|---|
Staphylococcus aureus | Escherichia coli | |
0 | 0 | 0 |
1 | 0 | 0 |
10 | 0 | 0 |
50 | 6.11±0.39 *** | 6.00±0.19 *** |
100 | 10.02±0.27 *** | 8.55±0.83 *** |
200 | 12.55±0.67 *** | 11.12±0.57 *** |
300 | 16.16±0.35 *** | 13.42±1.22 *** |
400 | 20.43±0.73 *** | 17.56±1.36 *** |
500 | 21.05±0.94 *** | 18.97±0.58 *** |
F | 1 791.14 | 636.14 |
P | <0.001 | <0.001 |
Tab. 3
Relative mRNA levels of COX-2, iNOS, TNF-α, IL-1β and IL-6 in RAW264.7 cells of each group"
Group | COX-2 | iNOS | TNF-α | IL-1β | IL-6 |
---|---|---|---|---|---|
C | 1.00±0.03 | 1.00±0.02 | 1.00±0.04 | 1.00±0.04 | 1.00±0.03 |
LPS | 11.48±0.78* | 10.96±0.48* | 14.86±1.35* | 12.99±0.83* | 16.20±0.79* |
LPS+1 μg/mL MOLEE | 11.54±0.74* | 11.00±0.75* | 15.42±1.09* | 12.49±1.23* | 15.20±1.39* |
LPS+10 μg/mL MOLEE | 11.82±0.83* | 10.88±0.42* | 15.29±0.84* | 12.87±1.53* | 16.37±1.43* |
LPS+50 μg/mL MOLEE | 10.16±0.49*# | 9.11±0.80*# | 12.01±0.62*# | 11.00±0.63*# | 14.33±0.68*# |
LPS+100 μg/mL MOLEE | 8.24±0.72*# | 7.31±0.56*# | 7.82±0.49*# | 8.79±0.66*# | 11.00±0.67*# |
LPS+200 μg/mL MOLEE | 5.74±0.19*# | 5.57±0.43*# | 4.99±0.36*# | 6.86±0.28*# | 7.39±0.37*# |
LPS+300 μg/mL MOLEE | 3.69±0.18*# | 3.73±0.12*# | 3.34±0.15*# | 4.55±0.29*# | 4.82±0.18*# |
LPS+400 μg/mL MOLEE | 2.27±0.11*# | 2.67±0.14*# | 2.43±0.11*# | 2.87±0.16*# | 3.27±0.10*# |
LPS+500 μg/mL MOLEE | 1.59±0.10*# | 2.08±0.11*# | 1.58±0.16*# | 1.97±0.17*# | 2.48±0.14*# |
F | 433.21 | 431.61 | 477.87 | 238.71 | 392.51 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
[1] | Helal I M, El-Bessoumy A, Al-Bataineh E, et al. Antimicrobial efficiency of essential oils from traditional medicinal plants of asir region, saudi arabia, over drug resistant isolates[J]. Biomed. Res. Int., 2019: 8928306. |
[2] | Leone A, Spada A, Battezzati A, et al. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera Leaves: An overview[J]. Int. J. Mol. Sci., 2015, 16(6): 12791-12835. |
[3] | Ramamurthy S, Thiagarajan K, Varghese S, et al. Assessing the in vitro antioxidant and anti-inflammatory activity of Moringa oleifera crude extract[J]. J. Contemp. Dent. Pract., 2022, 23(4): 437-442. |
[4] | Arora S, Arora S. Nutritional significance and therapeutic potential of Moringa oleifera: The wonder plant[J]. J. Food Biochem., 2021, 45(10): e13933. |
[5] | Kou X, Li B, Olayanju J B, et al. Nutraceutical or pharmacological potential of Moringa oleifera Lam[J]. Nutrients, 2018, 10(3): 343. |
[6] |
Jahan S, Shahjahan M, Rasna S S, et al. Antibacterial effect of Moringa (Moringa oleifera) leaf ethanolic extract against Staphylococcus aureus and Escherichia coli[J]. Mymensingh. Med. J., 2022, 31(4): 976-982.
pmid: 36189541 |
[7] | Mahmoud M S, El-Kott A F, AlGwaiz H I M, et al. Protective effect of Moringa oleifera Lam. leaf extract against oxidative stress, inflammation, depression, and apoptosis in a mouse model of hepatic encephalopathy[J]. Environ. Sci. Pollut. Res. Int., 2022, 29(55): 83783-83796. |
[8] |
Khan U A, Rahman H, Niaz Z, et al. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria[J]. Eur. J. Microbiol. Immunol. (Bp)., 2013, 3(4): 272-274.
doi: 10.1556/EuJMI.3.2013.4.6 pmid: 24294497 |
[9] | Gemeinder J L P, Barros N R, Pegorin G S, et al. Gentamicin encapsulated within a biopolymer for the treatment of Staphylococcus aureus and Escherichia coli infected skin ulcers[J]. J. Biomater. Sci. Polym. Ed., 2021, 32(1): 93-111. |
[10] | Segwatibe M K, Cosa S, Bassey K. Antioxidant and antimicrobial evaluations of Moringa oleifera Lam leaves extract and isolated compounds[J]. Molecules, 2023, 28(2): 899. |
[11] | Fouad E A, Abu Elnaga A S M, Kandil M M. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess[J]. Vet. World, 2019, 12(6): 802-808. |
[12] | Mushtaq B S, Hussain M B, Omer R, et al. Moringa oleifera in malnutrition: A comprehensive review[J]. Curr. Drug. Discov. Technol., 2021, 18(2): 235-243. |
[13] | Stohs S J, Hartman M J. Review of the safety and efficacy of Moringa oleifera[J]. Phytother. Res., 2015, 29(6): 796-804. |
[14] | Abdull R A F, Ibrahim M D, Kntayya S B. Health benefits of Moringa oleifera[J]. Asian Pac. J. Cancer Prev., 2014, 15(20): 8571-8576. |
[15] |
Al-Harbi N O, Imam F, Al-Harbi M M, et al. Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-κB, COX-2, and pro-inflammatory mediators[J]. Immunol. Invest., 2016, 45(4): 349-369.
doi: 10.3109/08820139.2016.1157814 pmid: 27104958 |
[16] | Cheng A, Han C, Fang X, et al. Extractable and non-extractable polyphenols from blueberries modulate LPS-induced expression of iNOS and COX-2 in RAW264.7 macrophages via the NF-κB signalling pathway[J]. J. Sci. Food Agric., 2016, 96(10): 3393-3400. |
[17] |
Xie C, Li X, Wu J, et al. Anti-inflammatory activity of magnesium isoglycyrrhizinate through inhibition of phospholipase A2/Arachidonic acid pathway[J]. Inflammation, 2015, 38(4): 1639-1648.
doi: 10.1007/s10753-015-0140-2 pmid: 25691139 |
[18] | Xu Y B, Chen G L, Guo M Q. Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from kenya and their correlations with flavonoids[J]. Antioxidants (Basel), 2019, 8(8): 296. |
[19] | Fujiwara N, Kobayashi K. Macrophages in inflammation[J]. Curr. Drug Targets Inflamm. Allergy, 2005, 4(3): 281-286. |
[20] | Keith Y H, Egawa G, Honda T, et al. Mast cells in type 2 skin inflammation: Maintenance and function[J]. Eur. J. Immunol., 2023, 53(8): e2250359. |
[21] |
Sabat R, Wolk K, Loyal L, et al. T cell pathology in skin inflammation[J]. Semin. Immunopathol., 2019, 41(3): 359-377.
doi: 10.1007/s00281-019-00742-7 pmid: 31028434 |
[22] | Mansouri M T, Hemmati A A, Naghizadeh B, et al. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats[J]. Indian J. Pharmacol., 2015, 47(3): 292-298. |
[23] | Siddique I, Khan I. Mechanism of regulation of Na-H exchanger in inflammatory bowel disease: role of TLR-4 signaling mechanism[J]. Dig. Dis. Sci., 2011, 56(6): 1656-1662. |
[24] | Shen Y, Boulton A P R, Yellon R L, et al. Skin manifestations of inborn errors of NF-κB[J]. Front. Pediatr., 2022, 10: 1098426. |
[25] | Wang Y, Wang L, Wen X, et al. NF-κB signaling in skin aging[J]. Mech. Ageing. Dev., 2019, 184: 111160. |
[26] | Chiș A, Noubissi P A, Pop O L, et al. Bioactive compounds in Moringa oleifera: Mechanisms of action, focus on their anti-inflammatory properties[J]. Plants (Basel), 2023, 13(1): 20. |
[27] | Mundkar M, Bijalwan A, Soni D, et al. Neuroprotective potential of Moringa oleifera mediated by NF-κB/Nrf2/HO-1 signaling pathway: A review[J]. J. Food Biochem., 2022, 46(12): e14451. |
[28] | Berkovich L, Earon G, Ron I, et al. Moringa oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells[J]. BMC Complement Altern. Med., 2013, 13: 212. |
[1] | Ting Xin, Jiaojiao Li, Zhao Wang. Study on the antibacterial activity of Phaseolus vulgaris Linn peptide and its inhibitory effect on the transcription of chemokines and inflammatory factors [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 75-83. |
[2] | Zhiming Wei, Yaling Wang. Study and analysis of antibacterial and anti-inflammatory activity of extracts of Rhizoma imperatae in oral care products [J]. China Surfactant Detergent & Cosmetics, 2024, 54(9): 1086-1091. |
[3] | Minjia Yuan,Qi Li,Cuicui Zhu,Hang Tie. Comparation of azelaic acid and chitosan encapsulated-azelaic acid complex in skin absorption efficiency and anti-inflammatory capability [J]. China Surfactant Detergent & Cosmetics, 2024, 54(8): 956-965. |
[4] | Shiyu Deng, Xu Sun, Jianming Jin, Hua Wu. Botanical cosmetic ingredients (VIII)Research and development of plant antibacterial [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 385-392. |
[5] | Weilan Liu, Li Li, Chunnian He, Yinmao Dong, Xiao Ling, Miaomiao Guo. Study on the inhibitory effect of total glycosides of Paeonia veitchii and its main component paeoniflorin on acne-associated inflammation [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 188-195. |
[6] | Wanping Zhang, Yiting Gu, Xuyan Li, Zhiyong Sun, Chunhong Wei, Dongmei Zhang. Hydration transformation behaviors of CO2 and excellent anti-inflammatory activity on RAW 264.7 cell [J]. China Surfactant Detergent & Cosmetics, 2024, 54(11): 1289-1297. |
[7] | Xue Xiao, Huirong Zhang, Shuowen Li, Sunhua Li, Miaomiao Guo, Li Li. Determination of four polyphenols and study on antioxidant and anti-inflammatory activities of extracts from callus of Eryngium maritimum L. [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 57-64. |
[8] | Chang Xiangling, Chai Fei. Preparation and performance study of zinc oxide nanocomposite antibacterial materials [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 1051-1056. |
[9] | Fang Tinghuan, Zheng Ting, Jiang Qing, Li Xiaoxia, Tang Lirong. Synergistic effect of silk peptides thermophilus fermentation on the skin anti-inflammatory and anti-aging activities [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 1057-1064. |
[10] | Xing Huanyu, Jia Lihua, Zhao Zhenlong, Yang Rui, Guo Xiangfeng. Synthesis and properties of novel surfactants containing naphthalimide and alkyl segments [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 742-747. |
[11] | Kong Qiuchan, Jiang Jiaxin, Xia Gaohui, Gong Shengzhao. Study on antibacterial activity of antibacterial fiber and its application in mask products [J]. China Surfactant Detergent & Cosmetics, 2023, 53(5): 538-543. |
[12] | Zhang Huirong, Guo Miaomiao, Chen Chen, Pan Qianyin, Zhang Ying, Li Li. The preparation process of three leguminous plant peptides and their activities [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 423-429. |
[13] | Hao Qing, Wu Ermin, Bi Yongxian, Liu Jinjun, Kong Decheng, Cheng Zhiwei. Study on screening extraction process of total flavonoids from Nelumbinis Plumula by polyols and its properties [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 398-407. |
[14] | Yani Xu, Kaiye Yang, Rongtao Zhu, Guangrong Liu, Ping Han, Zhiyun Du. Effects of compositions of bioactive peptides on skin aging in mice [J]. China Surfactant Detergent & Cosmetics, 2023, 53(12): 1421-1428. |
[15] | Sun Jinyue, Wu Nannan, Zhang Yu, He Huaming, He Congfen. Molecular mechanism of anti-inflammatory and antibacterial of Ocimum basilicum L. based on network pharmacology [J]. China Surfactant Detergent & Cosmetics, 2023, 53(1): 54-61. |
|