China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (1): 12-25.doi: 10.3969/j.issn.2097-2806.2025.01.002
• Invited paper • Previous Articles Next Articles
Shida Hou,Ping Peng,Yuankang Liu,Jing Yan*(),Yi Yan*(
)
Received:
2024-10-19
Online:
2025-01-22
Published:
2025-01-23
Contact:
E-mail: CLC Number:
Shida Hou, Ping Peng, Yuankang Liu, Jing Yan, Yi Yan. Advances in polymeric materials for bio-lubrication[J].China Surfactant Detergent & Cosmetics, 2025, 55(1): 12-25.
Fig. 1
Schematic illustration of the co-assembly of HA with phospholipids or mucins to form a brush lubricin structure (a)[10]; schematic illustration of the structure of mucins and the assembly of mucin monomers into oligomers (b)[11]; schematic illustration of the synergistic intermolecular interaction of natural lubricants to achieve excellent lubricating properties of articular cartilage (c)[12]"
Fig. 3
Schematic illustration of the preparation of hydrogel dressings based on HP-β-CD@I2 and DAC (a); comparison of the moisturizing properties of the prepared hydrogels and the control samples (b)[34]; schematic illustration of the interactions between FB and TA in PAM/FB/TA and the dressing peeling induced by glucose molecules (c)[35]"
Fig. 6
Schematic illustration of the therapeutic effect of PMPC-co-PDMA on DED through multiple mechanisms (a)[45]; schematic diagram of WGA-PEG binding to human gingival keratinocytes (b); comparison of COF on the surface of porcine tongue tissue after treatment with WGA-PEG and control samples at different number of cycles (c)[48]"
Fig. 8
Structure of PMPC and schematic illustration of its co-spinning with PCL to prepare electrospun fiber membrane (a); superlubricated surface (b) and anti-tendon adhesion properties (c) of PMPC/PCL electrospun membranes[58]; schematic illustration of the preparation process of “superlubricated nano-skin” on SLNM surface and its super-lubrication performance (d)[60]"
Fig. 9
Schematic representations of the crosslinking preparation process and the formation of a coating on the inner surface of the catheter forPVP-co-PEGDA-co-MFP hydrogel (a), as well as the schematic representations of the bacteriostatic (b) and lubrication mechanisms (c) of the coating [64]"
[1] | Schwarzenbach J, Dowson D. A Final year undergraduate lecture course on tribology[J]. Wear, 1976, 38 (1) : 153-163. |
[2] | Hunter D J, Bierma-Zeinstra S. Osteoarthritis[J]. The Lancet, 2019, 393 (10182) : 1745-1759. |
[3] | Søreide K, Skjold-Ødegaard B, Thorsen K, et al. Adhesions after open and laparoscopic abdominal surgery[J]. The Lancet, 2021, 397 (10269) : 95-96. |
[4] |
Song X, Man J, Qiu Y, et al. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications[J]. Acta Biomaterialia, 2024, 175: 76-105.
doi: 10.1016/j.actbio.2023.12.024 pmid: 38128641 |
[5] | Yuan H, Mears L L E, Wang Y, et al. Lubricants for osteoarthritis treatment: From natural to bioinspired and alternative strategies[J]. Advances in Colloid and Interface Science, 2023, 311: 102814. |
[6] | Yang L, Zhao X, Ma Z. An overview of functional biolubricants[J]. Friction, 2023, 11 (1) : 23-47. |
[7] | Gonzales G, Zauscher S, Varghese S. Progress in the design and synthesis of viscosupplements for articular joint lubrication[J]. Current Opinion in Colloid & Interface Science, 2023, 66: 101708. |
[8] |
Grandoch M, Bollyky P L, Fischer J W. Hyaluronan[J]. Circulation Research, 2018, 122 (10) : 1341-1343.
doi: 10.1161/CIRCRESAHA.118.312522 pmid: 29748364 |
[9] | Radin E L, Swann D A, Weisser P A. Separation of a hyaluronate-free lubricating fraction from synovial fluid[J]. Nature, 1970, 228 (5269) : 377-378. |
[10] | Lee S, Spencer N D. Sweet, hairy, soft, and slippery[J]. Science, 2008, 319 (5863) : 575-576. |
[11] |
Petrou G, Crouzier T. Mucins as multifunctional building blocks of biomaterials[J]. Biomaterials Science, 2018, 6 (9) : 2282-2297.
doi: 10.1039/c8bm00471d pmid: 30047553 |
[12] |
Jahn S, Seror J, Klein J. Lubrication of articular cartilage[J]. Annual Review of Biomedical Engineering, 2016, 18: 235-258.
doi: 10.1146/annurev-bioeng-081514-123305 pmid: 27420572 |
[13] | Lu K H, Lu W A, Lin C W, et al. Different molecular weights of hyaluronan research in knee osteoarthritis: A state-of-the-art review[J]. Matrix Biology, 2023, 117: 46-71. |
[14] |
Käsdorf B T, Weber F, Petrou G, et al. Mucin-inspired lubrication on hydrophobic surfaces[J]. Biomacromolecules, 2017, 18 (8) : 2454-2462.
doi: 10.1021/acs.biomac.7b00605 pmid: 28635258 |
[15] |
Sarma A V, Powell G L, LaBerge M. Phospholipid composition of articular cartilage boundary lubricant[J]. Journal of Orthopaedic Research, 2001, 19 (4) : 671-676.
doi: 10.1016/S0736-0266(00)00064-4 pmid: 11518278 |
[16] | Verberne G, Schroeder A, Halperin G, et al. Liposomes as potential biolubricant additives for wear reduction in human synovial joints[J]. Wear, 2010, 268 (7) : 1037-1042. |
[17] | Feng S, Li J, Li X, et al. Synergy of phospholipid and hyaluronan based super-lubricated hydrogels[J]. Applied Materials Today, 2022, 27: 101499. |
[18] |
Lin W, Mashiah R, Seror J, et al. Lipid-hyaluronan synergy strongly reduces intrasynovial tissue boundary friction[J]. Acta Biomaterialia, 2019, 83: 314-321.
doi: S1742-7061(18)30669-X pmid: 30423432 |
[19] | Lin W, Klein J. Recent progress in cartilage lubrication[J]. Advanced Materials, 2021, 33 (18) : 2005513. |
[20] |
DeMoya C D, Joenathan A, Lawson T B, et al. Advances in viscosupplementation and tribosupplementation for early-stage osteoarthritis therapy[J]. Nature Reviews Rheumatology, 2024, 20 (7) : 432-451.
doi: 10.1038/s41584-024-01125-5 pmid: 38858605 |
[21] | Klein J. Hydration lubrication[J]. Friction, 2013, 1 (1) : 1-23. |
[22] | Cao Y, Klein J. Lipids and lipid mixtures in boundary layers: From hydration lubrication to osteoarthritis[J]. Current Opinion in Colloid & Interface Science, 2022, 58: 101559. |
[23] | Bi Z, Mueller D W, Zhang C W J. State of the art of friction modelling at interfaces subjected to elastohydrodynamic lubrication (EHL)[J]. Friction, 2021, 9 (2) : 207-227. |
[24] | Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review[J]. Journal of Materials Science: Materials in Medicine, 2020, 31 (6) : 50. |
[25] | Zhang T, Guo Q, Xin Y, et al. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus[J]. Arabian Journal of Chemistry, 2022, 15 (10) : 104163. |
[26] | Cha S Y, Park S Y, Lee J S, et al. Efficacy of Dendrobium candidum polysaccharide extract as a moisturizer[J]. Journal of Cosmetic Dermatology, 2022, 21 (7) : 3117-3126. |
[27] | Li X, Wei J, Lin L, et al. Extraction, moisturizing activity and potential application in skin cream of Akebia trifoliata (Thunb.) Koidz polysaccharide[J]. Industrial Crops and Products, 2023, 197: 116613. |
[28] | Yang M, Zhang Z, He Y, et al. Study on the structure characterization and moisturizing effect of Tremella polysaccharide fermented from GCMCC5.39[J]. Food Science and Human Wellness, 2021, 10 (4) : 471-479. |
[29] | Li H, Xu J, Liu Y, et al. Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune[J]. Carbohydrate Polymers, 2011, 83 (4) : 1821-1827. |
[30] |
Xu H, Wu Z, Zhao D, et al. Preparation and characterization of electrospun nanofibers-based facial mask containing hyaluronic acid as a moisturizing component and huangshui polysaccharide as an antioxidant component[J]. International Journal of Biological Macromolecules, 2022, 214: 212-219.
doi: 10.1016/j.ijbiomac.2022.06.047 pmid: 35709871 |
[31] | Yang M, Zhao T, Xia W, et al. In-situ electrospinning with precise deposition of antioxidant nanofiber facial mask loaded with Enteromorpha prolifera polysaccharides[J]. International Journal of Biological Macromolecules, 2024, 257: 128698. |
[32] | Wang Y, Wang N, Liu W, et al. Preparation and evaluation of Gastrodia elata polysaccharide loaded electrospinning nanofiber facial mask[J]. Journal of Applied Polymer Science 2024, 141 (45) : e56199. |
[33] | Swetha M N P, Kamaraj M, Anish S M, et al. Recent progress in polysaccharide and polypeptide based modern moisture-retentive wound dressings[J]. International Journal of Biological Macromolecules, 2024, 256: 128499. |
[34] | Dong X, Sun Q, Xu J, et al. Development of a multifunctional composite hydrogel for enhanced wound healing: hemostasis, sterilization, and long-term moisturizing properties[J]. ACS Applied Materials & Interfaces, 2024, 16 (2) : 2972-2983. |
[35] | An H, Zhang M, Zhou L, et al. Anti-dehydration and rapid trigger-detachable multifunctional hydrogels promote scarless therapeutics of deep burn[J]. Advanced Functional Materials, 2023, 33 (17) : 2211182. |
[36] | Rajankunte M M, Al-Jawad M, Hall R M, et al. How do cartilage lubrication mechanisms fail in osteoarthritis? a comprehensive review[J]. Bioengineering, 2024, 11 (6) : 541. |
[37] | Yu P, Li Y, Sun H, et al. Cartilage-inspired hydrogel with mechanical adaptability, controllable lubrication, and inflammation regulation abilities[J]. ACS Applied Materials & Interfaces, 2022, 14 (23) : 27360-27370. |
[38] | Charmi G, Rahimi M, Socha K, et al. Bottlebrush polymer with dual functionality for osteoarthritis treatment: curcumin delivery and lubrication properties[J]. Polymer Chemistry, 2023, 14 (33) : 3827-3833. |
[39] | Zhang M, Peng X, Ding Y, et al. A cyclic brush zwitterionic polymer based pH-responsive nanocarrier-mediated dual drug delivery system with lubrication maintenance for osteoarthritis treatment[J]. Materials Horizons, 2023, 10 (7) : 2554-2567. |
[40] | Yu P, Li Y, Sun H, et al. Mimicking antioxidases and hyaluronan synthase: a zwitterionic nanozyme for photothermal therapy of osteoarthritis[J]. Advanced Materials, 2023, 35 (44) : 2303299. |
[41] | He Z, Bu P, Xu K, et al. Remodeling of the pro-inflammatory microenvironment in osteoarthritis via hydrogel-based photothermal therapy[J]. Advanced Composites and Hybrid Materials, 2024, 7 (2) : 36. |
[42] | Rahman M M, Kim D H, Park C K, et al. Experimental models, induction protocols, and measured parameters in dry eye disease: focusing on practical implications for experimental research[J]. International Journal of Molecular Sciences 2021, 22 (22) : 12102. |
[43] | Galor A, Moein H R, Lee C, et al. Neuropathic pain and dry eye[J]. The Ocular Surface, 2018, 16 (1) : 31-44. |
[44] | José-María S G, Concepción D H C, María C S G. Crosslinked hyaluronic acid with liposomes and crocin for management symptoms of dry eye disease caused by moderate meibomian gland dysfunction[J]. International Journal of Ophthalmology, 2020, 13 (9) : 1368-1373. |
[45] | Bui H L, Su Y H, Yang C J, et al. Mucoadhesive, antioxidant, and lubricant catechol-functionalized poly(phosphobetaine) as biomaterial nanotherapeutics for treating ocular dryness[J]. Journal of Nanobiotechnology, 2024, 22 (1) : 160. |
[46] | Wang H, Wang Q, Su Y, et al. Thermosensitive triblock copolymer for slow-release lubricants under ocular conditions[J]. ACS Applied Materials & Interfaces, 2024, 16 (1) : 1675-1687. |
[47] | Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico L L, et al. Self-lubricating, living contact lenses[J]. Advanced Materials, 2024, 36 (27) : 2313848. |
[48] | Blakeley M, Sharma P K, Kaper H J, et al. Lectin-functionalized polyethylene glycol for relief of mucosal dryness[J]. Advanced Healthcare Materials, 2022, 11 (2) : 2101719. |
[49] | Sarkar A, Xu F, Lee S. Human saliva and model saliva at bulk to adsorbed phases-similarities and differences[J]. Advances in Colloid and Interface Science, 2019, 273: 102034. |
[50] | Arany S, Kopycka-Kedzierawski D T, Caprio T V, et al. Anticholinergic medication: Related dry mouth and effects on the salivary glands[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2021, 132 (6) : 662-670. |
[51] | Wan H, Ma C, Vinke J, et al. Next generation salivary lubrication enhancer derived from recombinant supercharged polypeptides for xerostomia[J]. ACS Applied Materials & Interfaces, 2020, 12 (31) : 34524-34535. |
[52] |
Tang J, Xiang Z, Bernards M T, et al. Peritoneal adhesions: Occurrence, prevention and experimental models[J]. Acta Biomaterialia, 2020, 116: 84-104.
doi: 10.1016/j.actbio.2020.08.036 pmid: 32871282 |
[53] | Huang S, Fang Y, Yang B, et al. Zwitterionic biodegradable physical hydrogel based on ATRP technology for effective prevention of postoperative tissue adhesion[J]. Materials & Design, 2023, 227: 111727. |
[54] | Crabtree J H, Burchette R J. Effect of prior abdominal surgery, peritonitis, and adhesions on catheter function and long-term outcome on peritoneal dialysis[J]. The American Surgeon™, 2009, 75 (2) : 140-147. |
[55] | Zhu Y, Zhang C, Liang Y, et al. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers[J]. Biomaterials Science, 2024, 12 (7) : 1643-1661. |
[56] |
Cai X, Hu S, Yu B, et al. Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention[J]. Carbohydrate Polymers, 2018, 201: 201-210.
doi: S0144-8617(18)30963-9 pmid: 30241812 |
[57] | Zou M, Zhao X, Zhang X, et al. Bio-inspired multiple composite film with anisotropic surface wettability and adhesion for tissue repair[J]. Chemical Engineering Journal, 2020, 398: 125563. |
[58] |
Wang Y, Cheng L, Wen S, et al. Ice-inspired superlubricated electrospun nanofibrous membrane for preventing tissue adhesion[J]. Nano Letters, 2020, 20 (9) : 6420-6428.
doi: 10.1021/acs.nanolett.0c01990 pmid: 32813534 |
[59] | Cheng L, Wang Y, Sun G, et al. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion[J]. Research, 2020. |
[60] | Wang Y, Xu Y, Zhai W, et al. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention[J]. Nature Communications, 2022, 13 (1) : 5056. |
[61] | Jiang R, Liu X Y, Gao S, et al. A scalable and universal strategy for constructing long-term antibacterial coatings with lubricant property on medical catheters[J]. Progress in Organic Coatings, 2024, 196: 108738. |
[62] | Chopra A M, Mehta M, Bismuth J, et al. Polymer coating embolism from intravascular medical devices—a clinical literature review[J]. Cardiovascular Pathology, 2017, 30: 45-54. |
[63] | Sun C, Zhang Y, Dong F, et al. Fast-polymerized lubricant and antibacterial hydrogel coatings for medical catheters[J]. Chemical Engineering Journal, 2024, 488: 150944. |
[64] | Hu Y, Qiao Y, Lei P, et al. Dual network hydrogel coatings based on recombinant mussel protein with enhanced antibacterial and super-lubrication properties for urinary catheter applications[J]. Chemical Engineering Journal, 2023, 474: 145502. |
[65] | Li S, Bai Y, Liu X, et al. Bio-inspired robust, superhydrophilic and superlubric artificial vascular endothelium coating for anti-thromboinflammation on blood-contacting devices[J]. Composites Part B: Engineering, 2023, 257: 110670. |
[1] | Hua Xue, Fengchun Liang, Weili Yang, Qun He, Meirong Cai, Feng Zhou, Weifeng Bu. Boron-containing copolymers as environmentally friendly lubricant additives [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 1-11. |
[2] | Yuhuan Yan,Hechao Pan,Hongjie Bao,Jianhong Zhao,Yibo He. Application properties of a polymeric surfactant in different detergents [J]. China Surfactant Detergent & Cosmetics, 2024, 54(8): 930-938. |
[3] | Limei Sun, Haifeng He, Shenfa An, Zhiyong Luan, Peng Sun, Yang Wang, Feng Yan. Study on the emulsion-breaking performance of cross-linked polyether demulsifiers for the emulsion produced by surfactant/polymer flooding in Shengli oilfield [J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 795-802. |
[4] | Qinggang Liu, Yuhuan Yan, Hechao Pan, Xue Chen. Study on the application of surface active polymers in detergents [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 527-534. |
[5] | Shaolin Deng, Pengfei Zhou, Yulong Zhu. Advancements in the efficient dissolution methods of hydrophobically associating polymers [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 449-456. |
[6] | Meng Yu, Guorui Xu, Xiang Li, Yufei Zheng, Xuan Feng, Jinzhou Yang, Fenggang Liu. Experimental research of inorganic composite deep profile control and oil displacement agent for offshore high water cut oil fields [J]. China Surfactant Detergent & Cosmetics, 2024, 54(11): 1307-1312. |
[7] | Yixin Feng, Jiahong Ye, Jiali Weng, Jiali Wang, Yan Li, Lei Zhang. Research and analysis on the performance of a laundry companion as fabric softener [J]. China Surfactant Detergent & Cosmetics, 2024, 54(11): 1362-1367. |
[8] | Gao Dangge, Li Suirong, Wang Lili, Lv Bin, Zhao Jing. Properties of a fracturing fluid thickener synthesized by inverse emulsion polymerization based on water/isoamyl octanoate-white oil [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 625-633. |
[9] | Zhang Senlin, Sun Xudong, Zhang Lingfei, Wang Yun. Preparation and anti-staining properties of N-vinyl pyrrolidone/N-vinyl imidazole polymers [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 658-664. |
[10] | Liao Jianjun, Li Huabin, Deng Jinpin, He Gang, Liu Sisi, Zhang Xiao. Experimental study on polymer gel profile control and flooding in high-temperature heterogeneous reservoirs [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 373-381. |
[11] | Gao Dangge, Li Pengyu, Yu Shuzhen, Liu Wei, Lv Bin. Synthesis and washing aid properties of a polycarboxylate copolymer [J]. China Surfactant Detergent & Cosmetics, 2023, 53(3): 271-278. |
[12] | Zhang Qianjie, Shan Ziyue, Zhang Dongmei, Jiang Wen, Zhang Wanping. Research progress of stimuli-responsive polymer emulsifiers [J]. China Surfactant Detergent & Cosmetics, 2023, 53(11): 1305-1314. |
[13] | Kong Xiangling, Lan Yunping, Liu Xiaochun, Wang Shiqiong, Zheng Yifeng, Chen Laicheng, He Qiuxing. Effect of water-soluble polymer on the properties of liquid crystal emulsions [J]. China Surfactant Detergent & Cosmetics, 2023, 53(10): 1115-1124. |
[14] | Yang Chao, Tong Zhiming, Wang Zhansheng, Chen Wu. Study on the influence mechanisms of polymers and solid particles on the stability of crude oil emulsion [J]. China Surfactant Detergent & Cosmetics, 2023, 53(10): 1156-1165. |
[15] | He Wenyun,Xu Na,Li Xiaokun,Zhang Jinyuan,Lv Yaodong,Zhang Xingfang. Experimental exploration on applicability of the mixture of polymer and surfactant as the drag reduction additives for firefighting system [J]. China Surfactant Detergent & Cosmetics, 2022, 52(9): 913-919. |
|