China Surfactant Detergent & Cosmetics ›› 2023, Vol. 53 ›› Issue (8): 882-890.doi: 10.3969/j.issn.2097-2806.2023.08.004
• Development and application • Previous Articles Next Articles
Wang Zhuliang1,*(),Guan Shuping1,Zhang Min1,Yang Jie1,Li Yongji2
Received:
2023-05-09
Revised:
2023-07-19
Online:
2023-08-22
Published:
2023-08-28
Contact:
Zhuliang Wang
E-mail:lfwangzl@126.com.
CLC Number:
Wang Zhuliang,Guan Shuping,Zhang Min,Yang Jie,Li Yongji. The size and morphology control of Fe3O4 nanoparticles synthesized by solvothermal method using polyethylene glycol and diethylene glycol[J].China Surfactant Detergent & Cosmetics, 2023, 53(8): 882-890.
[1] | Zhang Yifei, Ning Rende, Wang Wei, et al. Synthesis of Fe3O4/PDA nanocomposites for osteosarcoma magnetic resonance imaging and photothermal therapy[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10. |
[2] |
Duan Wenjuan, Liu Guifang, Guo Cheng, et al. Preparation of nano materials Fe@Fe3O4 and its application in magnetic resonance imaging for liver functions[J]. Science of Advanced Materials, 2021, 13 (5) : 906-916.
doi: 10.1166/sam.2021.3994 |
[3] | Li Ziqi, Wan Weimin, Bai Ziwei, et al. Construction of pH-responsive nanoplatform from stable magnetic nanoparticles for targeted drug delivery and intracellular imaging[J]. Sensors and Actuators: B Chemical, 2023, 375. |
[4] | Ehsanimehr S, Moghadam P N, Dehaen W, et al. PEI grafted Fe3O4@SiO2@SBA-15 labeled FA as a pH-sensitive mesoporous magnetic and biocompatible nanocarrier for targeted delivery of doxorubicin to MCF-7 cell line[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615. |
[5] | Antarnusa G, Jayanti P D, Denny Y R, et al. Utilization of co-precipitation method on synthesis of Fe3O4/PEG with different concentrations of PEG for biosensor applications[J]. Materialia, 2022, 25. |
[6] | Yang Wei, Fei Jianwen, Xu Wei, et al. A biosensor based on the biomimetic oxidase Fe3O4@MnO2 for colorimetric determination of uric acid[J]. Colloids and Surfaces B: Biointerfaces, 2022, 212. |
[7] |
Qin Miao, Xu Mengjie, Niu Lulu, et al. Multifunctional modification of Fe3O4nanoparticles for diagnosis and treatment of diseases: A review[J]. Frontiers of Materials Science, 2021, 15 (1) : 36-53.
doi: 10.1007/s11706-021-0543-y |
[8] | Mo Yuyan, Fan Yajun, Xiao Xin, et al. Electrochemical performance and mechanism of surface‐fluorinated Fe3O4 as stable anode for lithium‐ion batteries[J]. Energy Technology, 2022, 10 (4). |
[9] | Wang Jie, Hu Qin, Hu Wenhui, et al. Preparation of hollow core-shell Fe3O4/nitrogen-doped carbon nanocomposites for lithium-ion batteries[J]. Molecules, 2022, 27 (2). |
[10] | Vicente M Y, Caravaca M, Farh S E, et al. Magnetic nanoparticles for removing inorganic arsenic species from waters: A proof of concept for potential application[J]. Advances in Sample Preparation, 2023, 6. |
[11] |
Ozturk D, Gülcan M. Synthesis, characterization, and in-situ H2O2 generation activity of activated Carbon/Goethite/Fe3O4/ZnO for heterogeneous electro-Fenton degradation of organics from woolen textile wastewater[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 251-263.
doi: 10.1016/j.jiec.2023.02.026 |
[12] | Jin Hua, Zhu Lin, Xu Xinyuan, et al. Synergistic pollutant degradation by Ag3PO4/Fe3O4/graphene oxide visible light-persulfate coupled system: Mechanism elucidation and performance optimization[J]. Catalysis Communications, 2023, 177. |
[13] |
Wang Lixia, Zheng Hao, Jin Xin, et al. Fe3O4 Hollow nanospheres grown in situ in three-dimensional honeycomb macroporous carbon boost long-life and high-rate lithium ion storage[J]. Journal of Electronic Materials, 2023, 52 (1) : 10-22.
doi: 10.1007/s11664-022-10026-w |
[14] |
Rajkumar S, Prabaharan M. Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy[J]. Colloids and Surfaces B: Biointerfaces, 2018, 174: 252-259.
doi: 10.1016/j.colsurfb.2018.11.004 |
[15] | Cui Zhijie, Feng Tiantian, Wang Xuehong, et al. Fabrication of P-MoO2-Fe3O4 nanobelts for efficient overall water splitting[J]. Fuel, 2023, 332 (2). |
[16] | Noroozi S, Hashemnia S, Mokhtari Z. Facile synthesis of cube-shaped Fe3O4 mesoporous nanoparticles and their application for electrochemical determination of Cu (Ⅱ) in aqueous solutions through the mediating effect of indigo carmine[J]. Materials Science & Engineering B, 2022, 286. |
[17] | Guan Mengjie, Mu Xuejian, Zhang Hao, et al. Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors[J]. Journal of Applied Physics, 2019, 126 (6). |
[18] | Yao Yangrong, Huang Wanzhen, Zhou Huan, et al. Self-assembly of dandelion-like Fe3O4@C@BiOCl magnetic nanocomposites with excellent solar-driven photocatalytic properties[J]. Journal of Nanoparticle Research, 2014, 16 (6). |
[19] | Nguyen M D, Tran H V, Xu S, et al. Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications[J]. Applied Sciences, 2021, 11. |
[20] | Chen Yongpeng, Zhang Jianguo, Wang Zhixin, et al. Solvothermal synthesis of size-controlled monodispersed superparamagnetic iron oxide nanoparticles[J]. Applied Sciences, 2019, 9. |
[21] | Huang Xiaosheng, Zhao Yinshuang, Lu Gongxuan, et al. Review of solvothermal synthesis of metal oxides, zeolites and noble metals based catalysts[J]. Journal of Molecular Catalysis (China), 2017, 31: 287-298. |
[22] | Hoffmann M M. Polyethylene glycol as a green chemical solvent[J]. Current Opinion in Colloid & Interface Science, 2022, 57. |
[23] |
Ali M E, Lamprecht A. Polyethylene glycol as an alternative polymer solvent for nanoparticle preparation[J]. International Journal of Pharmaceutics, 2013, 456 (1) : 135-142.
doi: 10.1016/j.ijpharm.2013.07.077 pmid: 23958752 |
[24] |
Cheng Yang, Tan Ruiqin, Wang Weiyan, et al. Controllable synthesis and magnetic properties of Fe3O4 and Fe3O4@SiO2 microspheres[J]. Journal of Materials Science, 2010, 45 (19) : 5347-5352.
doi: 10.1007/s10853-010-4583-4 |
[25] |
Rawat K, Kim H J, Shishodia P K. Synthesis of Cu2ZnSnS4 nanoparticles and controlling the morphology with Polyethylene glycol[J]. Materials Research Bulletin, 2016, 77: 84-90.
doi: 10.1016/j.materresbull.2016.01.012 |
[26] | Saito N, Haneda H. Hierarchical structures of ZnO spherical particles synthesized solvothermally[J]. Science and Technology of Advanced Materials, 2011, 12 (6). |
[27] |
Cheah P, Brown P, Qu J, et al. Versatile surface functionalization of water-dispersible iron oxide nanoparticles with precisely controlled sizes[J]. Langmuir, 2021, 37 (3) : 1279-1287.
doi: 10.1021/acs.langmuir.0c03314 pmid: 33434432 |
[28] | Ni Xu, Zhang Jingjing, Zhao Linjie, et al. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features[J]. Journal of Physics and Chemistry of Solids, 2022, 169. |
[29] |
Safari J, Zarnegar Z, Heydarian M. Magnetic Fe3O4 Nanoparticles as efficient and reusable catalyst for the green synthesis of 2-Amino-4H-chromene in aqueous media[J]. Bulletin of the Chemical Society of Japan, 2012, 85 (12) : 1332-1338.
doi: 10.1246/bcsj.20120209 |
[30] | Heidariramsheh M, Dabbagh M M, Mahdavi S M, et al. Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach[J]. Materials Science in Semiconductor Processing, 2021, 121. |
[31] | Liang Jun, Ma Huiru, Luo Wei, et al. Synthesis of magnetite submicrospheres with tunable size and superparamagnetism by a facile polyol process[J]. Materials Chemistry & Physics, 2013, 139(2-3) : 383-388. |
[32] |
Linh P H, Hao N V, Khien N V, et al. Correction to: Morphological evolution of 3D ZnO hierarchical nanostructures by diethylene glycol-assisted sol-gel synthesis for highly effective photocatalytic performance[J]. Journal of Sol-Gel Science and Technology, 2022, 104: 342-352.
doi: 10.1007/s10971-022-05886-x |
[33] |
Lamer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72 (11) : 4847-4854.
doi: 10.1021/ja01167a001 |
[34] |
Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114 (15) : 7610-7630.
doi: 10.1021/cr400544s pmid: 25003956 |
[35] |
You Hongjun, Fang Jixiang. Particle-mediated nucleation and growth of solution-synthesized metal nanocrystals: a new story beyond the LaMer curve[J]. Nano Today, 2016, 11 (2) : 145-167.
doi: 10.1016/j.nantod.2016.04.003 |
[36] |
Shi Liwang, Zhang Jinqiu, Zhao Man, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery[J]. Nanoscale, 2021, 13 (24) : 10748-10764.
doi: 10.1039/d1nr02065j pmid: 34132312 |
[37] |
Rabanel J M, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation[J]. Journal of Controlled Release, 2014, 185: 71-87.
doi: 10.1016/j.jconrel.2014.04.017 |
[38] |
Sharif S, Ahmad Z, Hoskins C, et al. Ag nanostructure morphologies and physicochemical properties dictated by the polyols used in the synthesis[J]. Journal of Nano Research, 2022, 76: 93-106.
doi: 10.4028/v-3a7iyt |
[1] | Zhang Zhenyang, He Yunyang. Syntheses of ZnO nanoparticles and their degradation activities on tetracycline hydrochloride [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 781-788. |
|