China Surfactant Detergent & Cosmetics ›› 2022, Vol. 52 ›› Issue (12): 1259-1268.doi: 10.3969/j.issn.1001-1803.2022.12.001
• Basic research • Next Articles
Qi Jiayue1,2,Mao Yi1,2,Chen Linqian1,2,Wang Jing1,2,Yang Cheng1,2,*(),Sun Yajuan1,2,*(
)
Received:
2022-02-21
Revised:
2022-12-02
Online:
2022-12-22
Published:
2022-12-29
Contact:
Cheng Yang,Yajuan Sun
E-mail:cyang@jiangnan.edu.cn;cmsun@jiangnan.edu.cn
CLC Number:
Qi Jiayue,Mao Yi,Chen Linqian,Wang Jing,Yang Cheng,Sun Yajuan. Preparation and characterization of ethyl cellulose-sodium alginate/chitosan microgels[J].China Surfactant Detergent & Cosmetics, 2022, 52(12): 1259-1268.
[1] | Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery[J]. Journal of Controlled Release, 2014, 10 (193) : 90-99. |
[2] |
Zheng B, Mcclements D J. Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability[J]. Molecules, 2020, 25 (12) : 2791.
doi: 10.3390/molecules25122791 |
[3] | Ma D, Tu Z, Wang H, et al. Microgel-in-microgel biopolymer delivery systems: Controlled digestion of encapsulated lipid droplets under simulated gastrointestinal conditions[J]. Journal of Agricultural & Food Chemistry, 2018, 66 (15) : 3930-3938. |
[4] | Torres O, Murray B, Sarkar A. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules[J]. Trends in Food Science & Technology, 2016, 55 (9) : 98-108. |
[5] |
Saunders B R, Vincent B. Microgel particles as model colloids: Theory, properties and applications[J]. Advances in Colloid and Interface Science, 1999, 80 (1) : 1-25.
doi: 10.1016/S0001-8686(98)00071-2 |
[6] |
Saxena S, Hansen C E, Lyon L A. Microgel mechanics in biomaterial design[J]. Accounts of Chemical Research, 2014, 47 (8) : 2426.
doi: 10.1021/ar500131v pmid: 24873478 |
[7] |
Ching S H, Bansal N, Bhandari B. Alginate gel particles: a review of production techniques and physical properties[J]. Critical Reviews in Food Science and Nutrition, 2015, 57 (6) : 1133-1152.
doi: 10.1080/10408398.2014.965773 |
[8] |
Wang M, Doi T, McClements D J. Encapsulation and controlled release of hydrophobic flavors using biopolymer-based microgel delivery systems: Sustained release of garlic flavor during simulated cooking[J]. Food Research International, 2019, 119 (5) : 6-14.
doi: 10.1016/j.foodres.2019.01.042 |
[9] |
Dingenouts N, Norhausen C, Ballauff M. Observation of the volume transition in thermosensitive coreshell latex particles by small-angle X-ray scattering[J]. Macromolecules, 1998, 31 (25) : 8912-8917.
doi: 10.1021/ma980985t |
[10] | Yu L, Sun Q, Hui Y, et al. Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release[J]. Journal of Colloid and Interface Science, 2018, 15 (539) : 497-503. |
[11] | Mahattanadul N, Sunintaboon P. Chitosan-functionalised poly (2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release[J]. Journal of Microencapsulation Microcapsules Liposomes Nanoparticles Microcells Microspheres, 2016, 33 (6) : 563-568. |
[12] |
Eral H B, López-Mejías V. Biocompatible alginate microgel particles as heteronucleants and encapsulating vehicles for hydrophilic and hydrophobic drugs[J]. Crystal Growth & Design, 2014, 14 (4) : 2073-2082.
doi: 10.1021/cg500250e |
[13] |
Zhang Z, Zhang R, Zou L, et al. Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release[J]. Food Hydrocolloids, 2016, 58 (7) : 308-315.
doi: 10.1016/j.foodhyd.2016.03.015 |
[14] | Zhang H, Gao M. An improved pH-responsive carrier based on EDTA-Ca-alginate for oral delivery of lactobacillus rhamnosus ATCC 53103[J]. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 2017, 155 (2) : 329-335. |
[15] |
Koshani R, Tavakolian M, Ven T. Cellulose-based dispersants and flocculants[J]. Journal of Materials Chemistry B, 2020, 8 (10) : 10502-10526.
doi: 10.1039/D0TB02021D |
[16] | Yu Y L, Zhang M J. Thermo-responsive monodisperse core-shell microspheres with PNIPAM core and biocompatible porous ethyl cellulose shell embedded with PNIPAM gates[J]. Journal of Colloid & Interface Science, 2012, 376 (1) : 97-106. |
[17] |
Ma Z, Song Z. Novel method for microencapsulation of oxalic acid with ethyl cellulose shell for sustained-release performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602 (5) : 125064.
doi: 10.1016/j.colsurfa.2020.125064 |
[18] |
Nouri A, Dizaji B F. Simultaneous linear release of folic acid and doxorubicin from ethyl cellulose/chitosan/g‐C3N4/MoS2 core‐shell nanofibers and its anticancer properties[J]. Journal of Biomedical Materials Research Part A, 2020, 109 (6) : 903-914.
doi: 10.1002/jbm.a.37081 |
[19] |
Sun Y, Ding J. High ethanol tolerance of oil-in-water Pickering emulsions stabilized by protein nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632 (2) : 127777.
doi: 10.1016/j.colsurfa.2021.127777 |
[20] | Zhao F, Qin X, Feng S. Preparation of microgel/sodium alginate composite granular hydrogels and their Cu2+ adsorption properties[J]. RSC Advances, 2016 (6) : 100511-100518. |
[21] |
Gan T, Zhang Y, Guan Y. In situ gelation of P(NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold[J]. Biomacromolecules, 2009, 10 (6) : 1410-1415.
doi: 10.1021/bm900022m pmid: 19366198 |
[22] |
Wen Z S, Xiang X W. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages[J]. International Journal of Biological Macromolecules, 2016, 88 (7) : 403-413.
doi: 10.1016/j.ijbiomac.2016.02.025 |
[23] |
Chen W, Palazzo A. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres[J]. Molecular Pharmaceutics, 2017, 14 (2) : 459-467.
doi: 10.1021/acs.molpharmaceut.6b00896 pmid: 27973854 |
[24] |
Hao L, Lin G. Phosphorylated zein as biodegradable and aqueous nanocarriers for pesticides with sustained-release and anti-UV properties[J]. Journal of Agricultural and Food Chemistry, 2019, 67 (36) : 9989-9999.
doi: 10.1021/acs.jafc.9b03060 pmid: 31430135 |
[25] |
Lawrie G, Keen I. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS[J]. Biomacromolecules, 2007, 8 (8) : 2533-2541.
pmid: 17591747 |
[26] |
Khichar K K, Dangi S B. Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites[J]. Polymer Composites, 2020, 41 (7) : 2792-2802.
doi: 10.1002/pc.25576 |
[27] |
Kulig D, Zimoch-Korzycka A. Study on alginate-chitosan complex formed with different polymers ratio[J]. Polymers, 2016, 8 (5) : 167.
doi: 10.3390/polym8050167 |
[28] |
Ghauri Z H, Islam A. Novel pH-responsive chitosan/sodium alginate/PEG based hydrogels for release of sodium ceftriaxone[J]. Materials Chemistry and Physics, 2021, 277 (1) : 125456.
doi: 10.1016/j.matchemphys.2021.125456 |
[29] |
Jing H, Huang X. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond[J]. Carbohydrate Polymers, 2022, 278 (15) : 118993.
doi: 10.1016/j.carbpol.2021.118993 |
[30] | Jung J, Li L. Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials[J]. Materials Science & Engineering, 2019, 104 (12) : 109961. |
[31] |
Niu Y, Yang T. Preparation and characterization of pH-responsive sodium alginate/humic acid/konjac hydrogel for L-ascorbic acid controlled release[J]. Materials Express, 2019, 9 (6) : 563-569.
doi: 10.1166/mex.2019.1537 |
[32] | Akila M, Sushama A, Ramanathan K. Study on in vitro cytotoxicity of papain against liver cancer cell line hep g2[J]. International Journal of Pharmacy & Pharmaceutical Sciences, 2014, 6 (9) : 160-161. |
[33] |
Kang M, Hong S K. Chitosan microgel: Effect of cross-linking density on pH-dependent release[J]. Korean Journal of Chemical Engineering, 2011, 29 (1) : 72-76.
doi: 10.1007/s11814-011-0138-x |
[34] |
Feng R, Wang L. Development of the pH responsive chitosan-alginate based microgel for encapsulation of Jughans regia L. polyphenols under simulated gastrointestinal digestion in vitro[J]. Carbohydrate Polymers, 2020, 250 (15) : 116917.
doi: 10.1016/j.carbpol.2020.116917 |
[35] |
Hariyadi D M, Lin C Y. Diffusion loading and drug delivery characteristics of alginate gel microparticles produced by a novel impinging aerosols method[J]. Journal of Drug Targeting, 2010, 18 (10) : 831-841.
doi: 10.3109/1061186X.2010.525651 pmid: 20958098 |
[1] | Keyun Hu. Preparation and paramagnetic study of Fe3O4-based core-shell nanostructured materials [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 298-304. |
[2] | Hao Lincong, Xia Xin. Research progress on lavender essential oil microcapsules and application in textiles [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 453-458. |
[3] | Huang Juan,Jiang Pingfu,Xie Wenjing,Chen Jianchu,Shi Jianqiang,Hu Xiaojia. Multiple emulsions in calcium alginate microgels as a delivery system for the encapsulation of different polar nutrients: Preparation and in vitro characterization [J]. China Surfactant Detergent & Cosmetics, 2021, 51(9): 865-873. |
[4] | SHI Li-yan,YANG Ming-zhu,SONG Bing-lei,CUI Zheng-gang. Synthesis of a eugenol-based surfactant and its application in preparing nanospheres [J]. China Surfactant Detergent & Cosmetics, 2020, 50(6): 373-378. |
[5] | YU Lin-lin,XIE Xing-hui,SHI Xiao-di,LI Xue-ting,LU Xi-hua. Preparation, characterization and application of lavender fragrance nanocapsules [J]. China Surfactant Detergent & Cosmetics, 2019, 49(8): 519-525. |
[6] | CHEN Wei-cai,YI Dan,LI Shu-yu,ZHANG Li-ping,JIANG Qing. Preparation and study of oral sustained-release formulation with long-acting bacteriostasis [J]. China Surfactant Detergent & Cosmetics, 2018, 48(8): 457-461. |
[7] | WANG Jiu-biao, CHU Hong. Study on UV-screen polydopamine nanocapsules for sustained release of fragrance [J]. China Surfactant Detergent & Cosmetics, 2018, 48(10): 582-588. |
|