China Surfactant Detergent & Cosmetics ›› 2022, Vol. 52 ›› Issue (10): 1072-1080.doi: 10.3969/j.issn.1001-1803.2022.10.006
• Development and application • Previous Articles Next Articles
Zhang Hucheng*(),Yang Guowei,Yang Jun,Fan Haitao,Luo Shuai,Liu Linying
Received:
2022-05-23
Revised:
2022-09-28
Online:
2022-10-22
Published:
2022-10-24
Contact:
Hucheng Zhang
E-mail:zhanghchbj@163.com
CLC Number:
Zhang Hucheng,Yang Guowei,Yang Jun,Fan Haitao,Luo Shuai,Liu Linying. Preparation of cordycepin nanoemulsion and its repair mechanism on the photoaged skin[J].China Surfactant Detergent & Cosmetics, 2022, 52(10): 1072-1080.
[1] |
Rinnerthaler M, Bischof J, Streubel M K, et al. Oxidative stress in aging human skin[J]. Biomolecules, 2015, 5 (2): 545-589.
doi: 10.3390/biom5020545 pmid: 25906193 |
[2] |
Jin X X, Zhang X D, Li Y B, et al. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice[J]. Biomaterials Advances, 2022, 135: 212744.
doi: 10.1016/j.bioadv.2022.212744 |
[3] | Wang Simeng, Li Tian, Yang Tianye, et al. Progress of skin photoaging models of ultraviolet irradiated experimental animals[J]. Chinese Journal of Aesthetic Medicine, 2018, 27 (7): 146-150. |
[4] | Huang Yanping, Yang Ying, Wang Hongjuan, et al. Study on the mechanism and application of cordycepin in the field of skin care[J]. Chinese Journal of Aesthetic Medicine, 2019, 28 (1): 168-170. |
[5] | Cunningham K. Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) link. Part I. isolation and characterization[J]. Journal of the Chemical Society, 1951, 2: 2299-2300. |
[6] |
Olatunji O J, Feng Y, Olatunji O O, et al. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties[J]. Biomedicine & Pharmacotherapy, 2016, 81: 7-14.
doi: 10.1016/j.biopha.2016.03.009 |
[7] |
Yan Q B, Zhang H D, Hui K, et al. Cordycepin ameliorates intracerebral hemorrhage induced neurological and cognitive impairments through reducing anti-oxidative stress in a mouse model[J]. Journal of Stroke and Cerebrovascular Diseases, 2022, 31 (1) : 106199.
doi: 10.1016/j.jstrokecerebrovasdis.2021.106199 |
[8] |
Hawley S A, Ross F A, Russell F M, et al. Mechanism of activation of AMPK by cordycepin[J]. Cell Chemical Biology, 2020, 27 (2): 214-222.
doi: S2451-9456(20)30004-0 pmid: 31991096 |
[9] | Liu Wei, Feng Nianping. Percutaneous drug delivery nanotechnology[M]. Beijing: China Medicine Science and Technology Press, 2020: 1-342. |
[10] |
Ruela A L M, Perissinato A G, de S Lino M E, et al. Evaluation of skin absorption of drugs from topical and transdermal formulations[J]. Brazilian Journal of Pharmaceutical Sciences, 2016, 52: 527-544.
doi: 10.1590/s1984-82502016000300018 |
[11] |
Haque T, Talukder M M U. Chemical enhancer: a simplistic way to modulate barrier function of the stratum corneum[J]. Advanced Pharmaceutical Bulletin, 2018, 8: 169-179.
doi: 10.15171/apb.2018.021 pmid: 30023318 |
[12] | Verma A, Jain A, Hurkat P, et al. Transfollicular drug delivery: current perspectives[J]. Research and Reports in Transdermal Drug Delivery, 2016, 5: 1-17. |
[13] |
Yu Y Q, Yang X, Wu X F, et al. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 646554.
doi: 10.3389/fbioe.2021.646554 |
[14] |
Santos A C, Morais F, Simões A, et al. Nanotechnology for the development of new cosmetic formulations[J]. Expert Opinion on Drug Delivery, 2019, 16 (4): 313-330.
doi: 10.1080/17425247.2019.1585426 |
[15] | Ramadon D, Mccrudden M T C, Courtenay A J, et al. Enhancement strategies for transdermal drug delivery systems: current trends and applications[J]. Drug Delivery and Translational Research, 2021, 21: 909-916. |
[16] | Zhang Hucheng, Fan Haitao, Wang Xiaojie, et al. Purification of cordycepin from fermentation broth of Cordyceps militaris by use of macroporous resin AB-8 and octadecyl bonded silica chromatography[J]. Mycosystema, 2015, 34 (3): 490-498. |
[17] |
Zhang H C, Deng L N, Zhang Z T, et al. Enhanced cordycepin production in caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), mutated by a multifunctional plasma mutagenesis system[J]. International Journal of Medicinal Mushrooms, 2020, 22 (12): 1147-1159.
doi: 10.1615/IntJMedMushrooms.2020037153 |
[18] | Ministry of Agriculture of the People’s Republic of China. Determination of cordycepin and adenosine in cordyceps products by high performance liquid chromatography method (NY/T 2116-2012) [S]. Beijing: China Agriculture Press, 2012: 1-3. |
[19] | Shen Huihui, Wen Qing, Guo Hanhong, et al. Preparation and efficacy evaluation of pleiotropic moisturizing co-delivery nanoemulsion[J]. Detergent & Cosmetics, 2019, 42 (4): 41-45. |
[20] |
Wang Z W, Chen Z L, Jiang Z Y, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents[J]. Nature Communications, 2019, 10: 2538.
doi: 10.1038/s41467-019-10386-8 pmid: 31182708 |
[21] | Wang Xueyan, Huang Yanping, Yang Rong, et al. The comparison study of permeation enhancing effects of microneedle and azone on the transdermal absorption of cordycepin[J]. China Medical Cosmetology, 2018, 8 (9): 84-87. |
[22] |
Choi M J, Maibach H I. Liposomes and niosomes as topical drug delivery systems[J]. Skin Pharmacology and Physiology, 2005, 18: 209-219.
pmid: 16015019 |
[23] |
Bi Y, Xia H X, Li L L, et al. Liposomal vitamin D3 as an anti-aging agent for the skin[J]. Pharmaceutics, 2019, 11: 311.
doi: 10.3390/pharmaceutics11070311 |
[24] |
Yu Y Q, Yang X, Wu X F. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 646554.
doi: 10.3389/fbioe.2021.646554 |
[25] |
Pardeike J, Hommoss A, Müller R H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products[J]. International Journal of Pharmaceutics, 2009, 366(1-2): 170-184.
doi: 10.1016/j.ijpharm.2008.10.003 pmid: 18992314 |
[26] | Bhalke R D, Kulkarni S S, Kendre P N, et al. A facile approach to fabrication and characterization of novel herbal microemulsion-based UV shielding cream[J]. Future Journal of Pharmaceutical Sciences, 2020, 6: 76. |
[1] | Yaoyao Li. Study on the anti-aging and antioxidant effects of isosinensetin [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 313-319. |
[2] | Liyuan Zhang, Linqi Yan, Qiaoyuan Cheng, Lvye Qi, Rong Wang, Liuqian Huang. Determination of 14 kinds of α-hydroxy acids and hydroxy esters in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 353-359. |
[3] | Hongling Zhang, Lin Cheng, Haiyan Wang, Feiya Luo, Huiliang Zhang, Lei Sun. Using DPRA alternative method to evaluate the skin sensitization of 3 coumarins [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 156-160. |
[4] | Xiaohong Pan, Ziqi Gao, Zhen Chen, Shuai Yin, Haiping Huang, Bin Hu. Discussion on the current situation of research and management on the stability of cosmetic products in China [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 201-208. |
[5] | Huiduan Long, Yixiang Lu, Jianglan Qin, Keming Zhang. Simultaneous determination of 24 coumarin compounds in cosmetics by high performance liquid chromatography and verification by liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 114-122. |
[6] | Yaru Wang, Tingyuan Mo, Hongxia Lai, Yue Zhou, Jiaying Xie, Jianhua Tan. Analysis of the causes of skin irritation of niacinamide cosmetics based on patch test and stability test [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 51-56. |
[7] | Xue Xiao, Huirong Zhang, Shuowen Li, Sunhua Li, Miaomiao Guo, Li Li. Determination of four polyphenols and study on antioxidant and anti-inflammatory activities of extracts from callus of Eryngium maritimum L. [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 57-64. |
[8] | Fang Tinghuan, Zheng Ting, Jiang Qing, Li Xiaoxia, Tang Lirong. Synergistic effect of silk peptides thermophilus fermentation on the skin anti-inflammatory and anti-aging activities [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 1057-1064. |
[9] | Feng Li,Zou Baisong. Simultaneous determination of 11 components in Danzhi Fangshaishuang SFP50 by HPLC [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 968-975. |
[10] | Wang Hongdan,Xu Weichang,Wang Yuan,Kong Xiangwen,Sun Lijuan. Determination of asiaticoside and madecassoside in Centella asiatica (L.) Urban by HPLC-ELSD [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 976-980. |
[11] | Wang Huazheng, Zhang Liang, Kang Xin, Kang Wanli, Li Zhe, Yang Hongbin. Effect of CO2 on physical properties of produced oil and water in Changqing and emulsion stabilization mechanism [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 617-624. |
[12] | Zhen Enlong, Zhang Wen, Qian Zhen, Du Ruotong, Wang Yang. Construction and plugging performance evaluation of emulsified thermosetting resin system [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 649-657. |
[13] | Yu Haiying, Qiao Zhenyun, Li Qiyan, Hu Defu, Niu Shuijiao, Wang Faping. Determination and isomer distribution of a cosmetic raw material hydroxypropyl tetrahydropyrantriol by HPLC [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 721-724. |
[14] | Gao Ruifang, Chai Ge, Li Xiangsheng. Determination of 47 kinds of dyestuffs in oxidative hair dye by high performance liquid chromatography [J]. China Surfactant Detergent & Cosmetics, 2023, 53(6): 725-732. |
[15] | Wu Yuanyang, Zhang Liyuan, Wang Ren, He Tingting. Determination of 10 prohibited stines in 3 different matrixes of cosmetics by HPLC-MS/MS [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 481-486. |
|