China Surfactant Detergent & Cosmetics ›› 2021, Vol. 51 ›› Issue (11): 1109-1117.doi: 10.3969/j.issn.1001-1803.2021.11.011
• Reviews • Previous Articles Next Articles
Wang Penghui1,Wang Weixian1,2,Yang Tao1,Zeng Hui1,2,*(),Rui Zebao1,*(
),Li Donghua3,Huang Ping3
Received:
2021-03-23
Revised:
2021-10-29
Online:
2021-11-22
Published:
2021-11-19
Contact:
Hui Zeng,Zebao Rui
E-mail:zenghui5@mail.sysu.edu.cn;ruizebao@mail.sysu.edu.cn
CLC Number:
Wang Penghui,Wang Weixian,Yang Tao,Zeng Hui,Rui Zebao,Li Donghua,Huang Ping. Influencing factors on washing performance of alkaline protease in liquid detergent[J].China Surfactant Detergent & Cosmetics, 2021, 51(11): 1109-1117.
Tab. 1
Types and chelating capacity of chelating agents commonly used in detergents"
代表性螯合剂 | 类型 | 蛋白酶 | 与钙离子的结合度 | 参考文献 |
---|---|---|---|---|
EDTA | 有机型 | Bacillus mojavensis A21 protease | 较强 | [ |
柠檬酸盐 | 有机型 | Bacillus lentus | 较弱 | [ |
硼酸盐 | 无机型 | Bacillus cereus BG1 protease | 一般 | [ |
N-酰基ED3A | 有机型 | Subtilisin Carlsberg | 较强 | [ |
NTA(氨三乙酸) | 有机型 | Subtilisin Carlsberg | 较弱 | [ |
N-羟乙基亚胺二乙酸 | 有机型 | Subtilisin Carlsberg | 很强 | [ |
聚丙烯酸 | 高分子型 | Subtilisin Carlsberg | 很强 | [ |
马来酸-丙烯酸共聚物 | 高分子型 | Subtilisin Carlsberg | 很强 | [ |
Tab. 2
Types of surfactants commonly used in detergents and their effects on protease stability"
表面活性剂 | 种类 | 蛋白酶 | 稳定性的影响 | 参考文献 |
---|---|---|---|---|
SDS | 阴离子型 | Trypsin | 很强 | [ |
LAS | 阴离子型 | Subtilisin Carlsberg | 很强 | [ |
AES | 阴离子型 | Purafect Prime | 一般 | [ |
Trion X-100 | 非离子型 | Bacillus invictae | 很弱 | [ |
Twenn-80 | 非离子型 | Pancreatic proteases | 很弱 | [ |
APEs | 非离子型 | Subtilisin Carlsberg | 较弱 | [ |
AEO | 非离子型 | Bacillus sp. EMB9 protease | 较弱 | [ |
CTAB | 阳离子型 | Bacillus nealsonii PN-11 protease | 较强 | [ |
甜菜碱类 | 两性离子型 | α-chymotrypsin | 一般 | [ |
[1] |
Mukherjee J, Majumder A B, Gupta M N. Adding an appropriate amino acid during crosslinking results in more stable crosslinked enzyme aggregates[J]. Analytical Biochemistry, 2016, 507:27-32.
doi: 10.1016/j.ab.2016.05.012 pmid: 27237371 |
[2] | Wang J, Zhang J, Zhang Y. Study on the behavior of alkaline protease at air-water interface[J]. China Surfactant Detergent & Cosmetics, 2015, 45(9): 490-494. |
[3] |
Stoner M R, Dale D A, Gualfetti P J, et al. Protease autolysis in heavy-duty liquid detergent formulations: effects of thermodynamic stabilizers and protease inhibitors[J]. Enzyme Microb Technol, 2004, 34(2): 114-125.
doi: 10.1016/j.enzmictec.2003.09.008 |
[4] |
Han X Q, Damodaran S. Stability of protease Q against autolysis and in sodium dodecyl sulfate and urea solutions[J]. Biochemical and Biophysical Research Communications, 1997, 240(3): 839-843.
pmid: 9398655 |
[5] |
Mechri S, Bouacem K, Jaouadi N Z, et al. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive[J]. Extremophiles, 2019, 23(6): 687-706.
doi: 10.1007/s00792-019-01123-6 |
[6] |
Ozturk N C, Kazan D, Denizci A A, et al. The influence of copper on alkaline protease stability toward autolysis and thermal inactivation[J]. Engineering in Life Sciences, 2012, 12(6): 662-671.
doi: 10.1002/elsc.v12.6 |
[7] |
Laszlo K, Szava A, Simon L M. Stabilization of various alpha-chymotrypsin forms in aqueous-organic media by additives[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 16(3/4): 141-146.
doi: 10.1016/S1381-1177(01)00053-4 |
[8] |
Dorau R, Gorbe T, Humble M S. Improved enantioselectivity of subtilisin carlsberg towards secondary alcohols by protein engineering[J]. Chembiochem, 2018, 19(4): 338-346.
doi: 10.1002/cbic.v19.4 |
[9] |
Russell D, Oldham N J, Davis B G. Site-selective chemical protein glycosylation protects from autolysis and proteolytic degradation[J]. Carbohydrate Research, 2009, 344(12): 1508-1514.
doi: 10.1016/j.carres.2009.06.033 pmid: 19608158 |
[10] |
Yu Y, Zhao J, Bayly A E. Development of surfactants and builders in detergent formulations[J]. Chinese Journal of Chemical Engineering, 2008, 16(4): 517-527.
doi: 10.1016/S1004-9541(08)60115-9 |
[11] |
Koohsaryan E, Anbia M, Maghsoodlu M. Application of zeolites as non‐phosphate detergent builders: A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104287.
doi: 10.1016/j.jece.2020.104287 |
[12] |
Gotoh K, Horibe K, Mei Y, et al. Effects of water hardness on textile detergency performance in aqueous cleaning systems[J]. Journal of Oleo Science, 2016, 65(2): 123-133.
doi: 10.5650/jos.ess15168 |
[13] |
Sharma A K, Kikani B A, Singh S P. Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18[J]. International Journal of Biological Macromolecules, 2020, 153:680-696.
doi: S0141-8130(20)31164-8 pmid: 32145232 |
[14] |
Ksiazek M, Karim A Y, Bryzek D, et al. Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia[J]. Biological Chemistry, 2015, 396(3): 261-275.
doi: 10.1515/hsz-2014-0256 |
[15] | Li J, Zhang J, Zhao Y X. Progress in research work field with respect to effects of metal ions on protease[J]. China Surfactant Detergent & Cosmetics, 2017, 47(6): 345-351. |
[16] |
Zhang J, Wang J, Zhao Y, et al. Study on the interaction between calcium ions and alkaline protease of bacillus[J]. International Journal of Biological Macromolecules, 2019, 124:121-130.
doi: S0141-8130(18)34153-9 pmid: 30471394 |
[17] |
Gohel S D, Singh S P. Thermodynamics of a Ca2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete[J]. International Journal of Biological Macromolecules, 2015, 72:421-429.
doi: 10.1016/j.ijbiomac.2014.08.008 pmid: 25150113 |
[18] |
Lund H, Kaasgaard S G, Skagerlind P, et al. Protease and amylase stability in the presence of chelators used in laundry detergent applications: correlation between chelator properties and enzyme stability in liquid detergents[J]. Journal of Surfactants and Detergents, 2012, 15(3): 265-276.
doi: 10.1007/s11743-011-1318-8 |
[19] |
Bakhtiar S, Andersson M M, Gessesse A, et al. Stability characteristics of a calcium-independent alkaline protease from Nesterenkonia sp.[J]. Enzyme Microb Technol, 2003, 32(5): 525-531.
doi: 10.1016/S0141-0229(02)00336-8 |
[20] |
Veltman O R, Vriend G, Van Den Burg B, et al. Engineering thermolysin-like proteases whose stability is largely independent of calcium[J]. FEBS Letters, 1997, 405(2): 241-244.
pmid: 9089298 |
[21] |
Haddar A, BougateF A, Agrebi R, et al. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization[J]. Process Biochemistry, 2009, 44(1): 29-35.
doi: 10.1016/j.procbio.2008.09.003 |
[22] |
Ghorbel B, SellamI-Kamoun A, Nasri M. Stability studies of protease from Bacillus cereus BG1[J]. Enzyme Microb Technol, 2003, 32(5): 513-518.
doi: 10.1016/S0141-0229(03)00004-8 |
[23] | Crudden J J, Parker B A, Lazzaro J V. The properties and applications of N-acyl ED3A chelating surfactants[J]. Industrial Applications of Surfactants IV, 1999: 130-150. |
[24] | Rischmiller M S, Smith K R, Peters S B, et al. Enzyme-containing detergent and presoak composition and methods of using[M]. Canada: Thomson Reuters, 2018: 350-351. |
[25] |
Grune T, Klotz L O, Gieche J, et al. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite[J]. Free Radical Biology and Medicine, 2001, 30(11): 1243-1253.
pmid: 11368922 |
[26] |
Estévez M. Protein carbonyls in meat systems: A review[J]. Meat Science, 2011, 89(3): 259-279.
doi: 10.1016/j.meatsci.2011.04.025 pmid: 21621336 |
[27] |
Xiong Y L, Blanchard S P, Ooizumi T, et al. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein[J]. Journal of Food Science, 2010, 75(2): 215-221.
doi: 10.1111/j.1750-3841.2009.01511.x |
[28] |
Zhang B, Yang Y, Luo B, et al. Effects of different foods on blood glucose and lipid in type 2 diabetes mellitus in a rat model[J]. Journal of Surgical Research, 2018, 229:254-261.
doi: S0022-4804(18)30128-8 pmid: 29936998 |
[29] |
Hammami A, Hamdi M, Abdelhedi O, et al. Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae: Characterization and potential applications in chitin extraction and as a detergent additive[J]. International Journal of Biological Macromolecules, 2017, 96:272-281.
doi: S0141-8130(16)32119-5 pmid: 27988295 |
[30] |
Von Der Osten C, Branner S, Hastrup S, et al. Protein engineering of subtilisins to improve stability in detergent formulations[J]. Journal of Biotechnology, 1993, 28(1): 55-68.
pmid: 7763525 |
[31] |
Cheng K C, Khoo Z S, Lo N W, et al. Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants[J]. Heliyon, 2020, 6(5): e03861.
doi: 10.1016/j.heliyon.2020.e03861 |
[32] |
Otzen D. Protein-surfactant interactions: A tale of many states[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2011, 1814(5): 562-591.
doi: 10.1016/j.bbapap.2011.03.003 |
[33] |
Holmberg K. Interactions between surfactants and hydrolytic enzymes[J]. Colloid Surf B-Biointerfaces, 2018, 168:169-177.
doi: 10.1016/j.colsurfb.2017.12.002 |
[34] | Wu M N, Li L, Xia Y H, et al. Improvement of proteases stability in liquid laundry detergent[J]. China Surfactant Detergent & Cosmetics, 2019, 49(2): 103-107. |
[35] |
Ghosh S. Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: A conformational view[J]. Colloid Surf B-Biointerfaces, 2008, 66(2): 178-186.
doi: 10.1016/j.colsurfb.2008.06.011 |
[36] |
Russell G L, Britton L N. Use of certain alcohol ethoxylates to maintain protease stability in the presence of anionic surfactants[J]. Journal of Surfactants and Detergents, 2002, 5(1): 5-10.
doi: 10.1007/s11743-002-0198-9 |
[37] |
Guncheva M, Stippler E. Effect of four commonly used dissolution media surfactants on pancreatin proteolytic activity[J]. AAPS PharmSciTech, 2017, 18(4): 1402-1407.
doi: 10.1208/s12249-016-0618-8 pmid: 27586964 |
[38] |
Sinha R, Khare S K. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity[J]. Bioresource Technology, 2013, 145:357-361.
doi: 10.1016/j.biortech.2012.11.024 |
[39] |
David A, Singh Chauhan P, Kumar A, et al. Coproduction of protease and mannanase from Bacillus nealsonii PN-11 in solid state fermentation and their combined application as detergent additives[J]. International Journal of Biological Macromolecules, 2018, 108:1176-1184.
doi: 10.1016/j.ijbiomac.2017.09.037 |
[40] |
Verma S K, Ghosh K K, Verma R, et al. Surface, conformational and catalytic activity approach of ot-chymotrypsin and trypsin in micellar media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470:188-193.
doi: 10.1016/j.colsurfa.2015.01.070 |
[41] |
Raval V H, Pillai S, Rawal C M, et al. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria[J]. Process Biochemistry, 2014, 49(6): 955-962.
doi: 10.1016/j.procbio.2014.03.014 |
[42] |
Giehm L, Oliveira C L P, Christiansen G, et al. SDS-induced fibrillation of α-synuclein: an alternative fibrillation pathway[J]. Journal of Molecular Biology, 2010, 401(1): 115-133.
doi: 10.1016/j.jmb.2010.05.060 pmid: 20540950 |
[43] |
Andersen K K, Oliveira C L, Larsen K L, et al. The role of decorated SDS micelles in sub-CMC protein denaturation and association[J]. Journal of Molecular Biology, 2009, 391(1): 207-226.
doi: 10.1016/j.jmb.2009.06.019 pmid: 19523473 |
[44] |
Otzen D E, Oliveberg M. Burst-phase expansion of native protein prior to global unfolding in SDS11Edited by A. R. Fersht[J]. Journal of Molecular Biology, 2002, 315(5): 1231-1240.
doi: 10.1006/jmbi.2001.5300 |
[45] |
Chakraborty A, Basak S. Effect of surfactants on casein structure: A spectroscopic study[J]. Colloid Surf B: Biointerfaces, 2008, 63(1): 83-90.
doi: 10.1016/j.colsurfb.2007.11.005 |
[46] |
Turro N J, Lei X G, Ananthapadmanabhan K P, et al. Spectroscopic probe analysis of protein-surfactant interactions: the BSA/SDS system[J]. Langmuir, 1995, 11(7): 2525-2233.
doi: 10.1021/la00007a035 |
[47] |
Reynolds J A, Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes[J]. The Journal of Biological Chemistry, 1970, 245(19): 5161-5165.
doi: 10.1016/S0021-9258(18)62831-5 |
[48] |
Shirahama K. Free-boundary electrophoresis of sodium dodecyl sulfate-protein polypeptide comlexes with special reference to SDS-polyacrylamide gel electrophoresis[J]. J Biochem, 1974, 75(2): 309-328.
pmid: 4837445 |
[1] | Zhisheng Zhang, Chanliang Shen, Jianxun Li, Yanqiang Liu, Weiwei Han, Sanbao Dong. Preparation and performance of betaine/AOS/Gemini ternary surfactant foam for gas well deliquification [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 239-249. |
[2] | Guofeng Li, Kainan Liu, Wenlong Mo, Teng Ma. Performance evaluation of a system of imbibition oil displacement agent in shale reservoir [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 250-258. |
[3] | Hongmei Zhang, Yongmin Zhang. Synthesis and properties of a choline-fatty-acid-based ionic liquid surfactant [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 149-155. |
[4] | Pei Liu, Ting Pan, Xiaomei Pei, Binglei Song, Jianzhong Jiang, Zhenggang Cui, Bernard P. Binks. Dual-responsive oil-in-water emulsions co-stabilized by a nonionic-anionic Bola surfactant and silica nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 1-15. |
[5] | Haokang Ai, Yajie Jiang, Yakui Wang, Lu Zhang, Tao Geng. Synthesis and properties of Gemini quaternary ammonium surfactant based on stearate [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 16-23. |
[6] | Wanping Zhang, Yanzhong Lin, Qianjie Zhang, Dongmei Zhang, Wen Jiang. Study on the phase behavior of sodium lauroyl methyltaurate mediated by Ca2+ [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 32-37. |
[7] | Chang Shiteng, Cai Xiaojun, Zheng Yancheng, Liu Xuejin, Yi Xiao, Jiang Zhuyang. Physicochemical properties of ethoxylated sulfosuccinate surfactants and their interfacial properties when mixed with a betaine surfactant [J]. China Surfactant Detergent & Cosmetics, 2023, 53(9): 989-998. |
[8] | Xu Derong,Lian Wei,Xiong Jinzhao,Kang Wanli. Research on the influence factors of surfactant imbibition in tight reservoirs [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 857-864. |
[9] | Niu Qiqi,Lv Qichao,Dong Zhaoxia,Zhang Fengfan,Wang Hongbo. Research progress on the properties of foam systems containing wormlike micelles [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 915-924. |
[10] | Wang Jiarui,Wei Xiaocheng,Zhang Chunxue,Chen Peizhen,Zheng Xiangqun,Wang Qiang. Research progress on detection methods of surfactants in water samples from environment [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 925-934. |
[11] | Qiang Xuefeng, Zhang Li, Zheng Bin, Hou Qianqian, Yan Kun. Study on the inf luence of KCl on the evolution of foam of an anionic surfactant [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 733-741. |
[12] | Xing Huanyu, Jia Lihua, Zhao Zhenlong, Yang Rui, Guo Xiangfeng. Synthesis and properties of novel surfactants containing naphthalimide and alkyl segments [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 742-747. |
[13] | Fu Jiangpeng, Du Jinmei, Miao Dagang, Xiao Guowei, Jiang Yang, Xu Changhai. Effects of surfactants on removing colored stains from textiles when using activated peroxide systems [J]. China Surfactant Detergent & Cosmetics, 2023, 53(5): 511-516. |
[14] | Yongkang Zhang, Mengmeng Liu, Zhiwei Wan, Yaocong Wang, Mimi Tian, Liewei Qiu. Effect of spacer on the performance of Gemini betaine surfactant in clean fracturing fluid [J]. China Surfactant Detergent & Cosmetics, 2023, 53(12): 1398-1404. |
[15] | Ting Pan, Junhui Wu, Xiaomei Pei, Zhenggang Cui. Temperature and pH responsive behavior of wormlike micelles formed by novel pseudo-gemini surfactant [J]. China Surfactant Detergent & Cosmetics, 2023, 53(12): 1361-1368. |
|