China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (6): 803-810.doi: 10.3969/j.issn.2097-2806.2025.06.015
• Reviews • Previous Articles Next Articles
Fan Wu1,2,Jiaqi Zhang1,2,Yi Qin1,2,Jun Wang1,2,Zonghan Wu3,Yao Pan1,2,*()
Received:
2024-06-06
Revised:
2025-05-28
Online:
2025-06-22
Published:
2025-07-01
Contact:
E-mail: CLC Number:
Fan Wu, Jiaqi Zhang, Yi Qin, Jun Wang, Zonghan Wu, Yao Pan. Progress of cosmetic active ingredients exerting skincare efficacy through cellular autophagy[J].China Surfactant Detergent & Cosmetics, 2025, 55(6): 803-810.
Tab. 1
Active ingredients affecting cellular autophagy in the field of cosmetics"
活性成分种类 | 活性成分 | 作用对象 | 原理 | 功能特性 | 参考文献 | |
---|---|---|---|---|---|---|
多酚类化合物 | 类黄酮 | 儿茶素衍生物(EGCG含量 最多) | HaCaT细胞、皮脂腺细胞、成纤维细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活细胞自噬,激活Nrf2通路 | 抗炎,抗氧化,抑制痤疮丙酸杆菌,减少皮脂分泌,缓解痤疮 | [ |
黄芩苷 | 成纤维细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活自噬,下调ROS与氧化DNA加合物 | 抗氧化,减缓DNA损伤 | [ | ||
非类黄酮 | 紫檀芪 | B16F10细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活自噬,影响MITF-CREB-酪氨酸酶途径,降解黑素小体 | 美白 | [ | |
鞣花酸 | B16F10细胞 | 影响PI3K/AKT/mTOR通路和Beclin-1/Bcl-2,激活自噬,影响MITF-CREB-酪氨酸酶途径 | 美白 | [ | ||
白藜芦醇 | 成纤维细胞 | 抑制AMPK-mTOR-ULK1信号通路,激活自噬,下调ROS,抑制细胞凋亡,恢复正常细胞周期,降低MMPs表达 | 抗氧化,抗炎,修护皮肤屏障,减少胶原降解 | [ | ||
丁香树脂酚 | HaCaT细胞 | 影响NF-κB对MMP的调控,抑制MMPs活性 | 减少胶原降解 | [ | ||
羟基酪醇 | H2O2损伤大鼠真皮细胞 | 下调ROS水平,减少H2O2损伤诱导的炎性细胞因子IL-6和TNF-α的释放 | 抗炎,抗氧化 | [ | ||
多糖 | 金银花多糖 | 特应性皮炎小鼠模型 | 上调p62激活Nrf2通路 | 抗炎,抗氧化 | [ | |
石斛多糖 | 光老化HaCaT细胞模型小鼠皮肤模型 | 促进细胞自噬,抗氧化,减少细胞凋亡与DNA损伤 | 抗氧化,抗炎,缓解DNA损伤 | [ | ||
皂苷类 | 黄芪甲苷 | 大鼠真皮成纤维细胞 | 下调ROS水平,调节NF-κB通路,降低MMPs的表达 | 抗氧化,减少胶原降解 | [ | |
有机酸 | 熊果酸 | B16F10细胞 | 促进黑素小体降解 | 美白 | [ | |
3-O-甘油-2-O-己基抗坏血酸酯 | B16F10细胞 | 激活自噬,影响MITF-CREB- 酪氨酸酶途径 | 美白(下调MITF基因表达途径) | [ | ||
紫草酸 | 银屑病模型小鼠 | 增加皮肤水合作用,抑制皮肤红斑与角质形成细胞过度增殖,缓解了皮肤炎症并减少角质化程度 | 修护皮肤屏障 | [ | ||
醌类化合物 | 辅酶Q0 | HaCaT细胞、B16F10 细胞 | 诱导自噬,抑制 CREB-MITF通路与酪氨酸酶表达/活性,并且降解黑素小体 | 美白 | [ |
[1] | Ren H, Zhao F, Zhang Q, et al. Autophagy and skin wound healing[J]. Burns & Trauma, 2022, 10: tkac003. |
[2] |
Guo Y Y, Zhang X, Wu T H, et al. Autophagy in skin diseases[J]. Dermatology, 2019, 235 (5) : 380-389.
doi: 10.1159/000500470 |
[3] | Lotfoliahi Z. The anatomy, physiology and function of all skin layers and the impact of ageing on the skin[J]. Wound Practice and Research, 2024, 32 (1) : 6-10. |
[4] | Wang Y J, Wen X, Hao D, et al. Insights into autophagy machinery in cells related to skin diseases and strategies for therapeutic modulation[J]. Biomedicine & Pharmacotherapy, 2019, 113: 108775. |
[5] |
Levine B, Klionsky D J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy[J]. Developmental Cell, 2004, 6 (4) : 463-477.
doi: 10.1016/s1534-5807(04)00099-1 pmid: 15068787 |
[6] |
Saikia R, Joseph J. AMPK: a key regulator of energy stress and calcium-induced autophagy[J]. Journal of Molecular Medicine, 2021, 99 (11) : 1539-1551.
doi: 10.1007/s00109-021-02125-8 pmid: 34398293 |
[7] | Li Z, Tian X, Ji X, et al. ULK1-ATG13 and their mitotic phospho-regulation by CDK1 connect autophagy to cell cycle[J]. PLOS Biology, 2020, 18 (6) : e3000288. |
[8] |
Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast[J]. Nature Reviews Molecular Cell Biology, 2009, 10 (7) : 458-467.
doi: 10.1038/nrm2708 pmid: 19491929 |
[9] | Xia F, Liu P, Li M. The regulatory factors and pathological roles of autophagy-related protein 4 in diverse diseases: Recent research advances[J]. Medicinal Research Reviews, 2021, 41 (3) : 1644-1675. |
[10] | Hill D, Cosgarea I, Reynolds N, et al. Research techniques made simple: analysis of autophagy in the skin[J]. Journal of Investigative Dermatology, 2021, 141 (1) : 5. |
[11] | Lyu W, Li Q, Wang Y, et al. Computational design of binder as the LC3-p62 protein-protein interaction[J]. Bioorganic Chemistry, 2021, 115: 105241. |
[12] |
Yang Z F, Huang J, Geng J F, et al. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy[J]. Molecular Biology of the Cell, 2006, 17 (12) : 5094-5104.
doi: 10.1091/mbc.e06-06-0479 pmid: 17021250 |
[13] | Csekes E, Račková L. Skin aging, cellular senescence and natural polyphenols[J]. International Journal of Molecular Sciences, 2021, 22 (23) : 12641. |
[14] | Agrawal R, Hu A, Bollag W B. The skin and inflamm-aging[J]. Biology, 2023, 12 (11) : 1396. |
[15] | Lee A Y. Skin pigmentation abnormalities and their possible relationship with skin aging[J]. International Journal of Molecular Sciences, 2021, 22 (7) : 3727. |
[16] |
de Moura J P, de Mourarnandes É P de Moura Fernandes É P, Lustoza Rodrigues T, et al. Targets involved in skin aging and photoaging and their possible inhibitors: a mini-review[J]. Current Drug Targets, 2023, 24 (10) : 797-815.
doi: 10.2174/1389450124666230719105849 pmid: 37469150 |
[17] | Kovacs M, Podda M. Skin aging and dermatological pathologies[J]. Journal fur Asthetische Chirurgie, 2021, 14 (2) : 68-73. |
[18] | Gu Y, Han J, Jiang C, et al. Biomarkers, oxidative stress and autophagy in skin aging[J]. Ageing Research Reviews, 2020, 59: 101036. |
[19] | Ma J, Teng Y, Huang Y, et al. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging[J]. Frontiers in Pharmacology, 2022, 13: 864331. |
[20] |
Wen W, Chen J, Ding L, et al. Astragaloside exerts anti-photoaging effects in UVB-induced premature senescence of rat dermal fibroblasts through enhanced autophagy[J]. Archives of Biochemistry and Biophysics, 2018, 657: 31-40.
doi: S0003-9861(18)30475-2 pmid: 30222953 |
[21] | Zhang J A, Luan C, Huang D, et al. Induction of autophagy by baicalin through the AMPK-mTOR pathway protects human skin fibroblasts from ultraviolet B radiation-induced apoptosis[J]. Drug Design, Development and Therapy, 2020: 417-428. |
[22] | Guo L, Yang Y, Pu Y, et al. Dendrobium officinale Kimura & Migo polysaccharide and its multilayer emulsion protect skin photoaging[J]. Journal of Ethnopharmacology, 2024, 318: 116974. |
[23] | Papaccio F, D′ Arino A, Caputo S, et al. Focus on the contribution of oxidative stress in skin aging[J]. Antioxidants, 2022, 11 (6) : 1121. |
[24] | Choi W, Kim H S, Park S H, et al. Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy[J]. Journal of Ginseng Research, 2022, 46 (4) : 536-542. |
[25] | Chen Q, Sun T, Wang J, et al. Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy[J]. Journal of Biochemical and Molecular Toxicology, 2019, 33 (9) : e22377. |
[26] | Bai X, Rao X, Wang Y, et al. A homogeneous Lonicera japonica polysaccharide alleviates atopic dermatitis by promoting Nrf2 activation and NLRP3 inflammasome degradation via p62[J]. Journal of Ethnopharmacology, 2023, 309: 116344. |
[27] | Zheng Wenge, Li Huijuan, Go Yuyo, et al. Research advances on the damage mechanism of skin glycation and related inhibitors[J]. Nutrients, 2022, 14 (21) : 4588. |
[28] | Laughlin T, Tan Y, Jarrold B, et al. Autophagy activators stimulate the removal of advanced glycation end products in human keratinocytes[J]. Journal of the European Academy of Dermatology and Venereology, 2020, 34: 12-18. |
[29] | Park G, Sim Y, Lee W, et al. Protection on skin aging mediated by antiapoptosis effects of the water lily (Nymphaea tetragona Georgi) via reactive oxygen species scavenging in human epidermal keratinocytes[J]. Pharmacology, 2016, 97 (5/6) : 282-293. |
[30] | Ganesan A K, Ho H, Bodemann B, et al. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells[J]. PLoS Genetics, 2008, 4 (12) : e1000298. |
[31] | Lee J W, Kim Y, Choi S J, et al. Hosta longipes inhibits melanogenesis by reducing expression of the melanocortin 1 receptor[J].Molecular & Cellular Toxicology, 2021, 17 (4) : 503-512. |
[32] | Choi M Y, Song H S, Hur H S, et al. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells[J]. Archives of Pharmacal Research, 2008, 31: 1166-1171. |
[33] | 杨小玉, 刘金俊, 刘蕾, 等. 黑色素的生成代谢机制及研究方法进展[J]. 日用化学工业(中英文), 2023, 53 (10) : 1194-1203. |
[34] | Lee K W, Kim M, Lee S H, et al. The function of autophagy as a regulator of melanin homeostasis[J]. Cells, 2022, 11 (13) : 2085. |
[35] | Hseu Y C, Gowrisankar Y V, Wang L W, et al. The in vitro and in vivo depigmenting activity of pterostilbene through induction of autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in keratinocytes via Nrf2-mediated antioxidant pathways[J]. Redox Biology, 2021, 44: 102007. |
[36] | Yang H L, Lin C P, Gowrisankar Y V, et al. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes[J]. Biochemical Pharmacology, 2021, 185: 114454. |
[37] |
Park H J, Jo D S, Choi D S, et al. Ursolic acid inhibits pigmentation by increasing melanosomal autophagy in B16F1 cells[J]. Biochemical and Biophysical Research Communications, 2020, 531 (2) : 209-214.
doi: S0006-291X(20)31526-6 pmid: 32792197 |
[38] | Chen S J, Hseu Y C, Gowrisankar Y V, et al. The anti-melanogenic effects of 3-O-ethyl ascorbic acid via Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes and autophagy induction in melanocytes[J]. Free Radical Biology and Medicine, 2021, 173: 151-169. |
[39] | Hseu Y C, Yeh J T, Vadivalagan C, et al. The in vitro and in vivo depigmentation activity of coenzyme Q0, a major quinone derivative from Antrodia camphorata, through autophagy induction in human melanocytes and keratinocytes[J]. Cell Communication and Signaling, 2024, 22 (1) : 151. |
[40] | Phacharapiyangkul N, Thirapanmethee K, Sa-Ngiamsuntorn K, et al. The ethanol extract of Musa sapientum Linn. Peel inhibits melanogenesis through AKT signaling pathway[J]. Cosmetics, 2021, 8 (3) : 70. |
[41] | Lee K W, Nguyen D T, Kim M, et al. Amorphigenin from Amorpha fruticosa L. root extract induces autophagy-mediated melanosome degradation in mTOR-independent-and AMPK-dependent manner[J]. Current Issues in Molecular Biology, 2022, 44 (7) : 2856-2867. |
[42] | Choi E H. Aging of the skin barrier[J]. Clinics in Dermatology, 2019, 37 (4) : 336-345. |
[43] | Geng Q, Wei G, Hu Y, et al. Alterations of autophagy modify lipids in epidermal keratinocytes[J]. Clinical, Cosmetic and Investigational Dermatology, 2023: 1569-1581. |
[44] | Liu C, Gu L, Ding J, et al. Autophagy in skin barrier and immune-related skin diseases[J]. The Journal of Dermatology, 2021, 48 (12) : 1827-1837. |
[45] | Choi M S, Chae Y J, Choi J W, et al. Potential therapeutic approaches through modulating the autophagy process for skin barrier dysfunction[J]. International Journal of Molecular Sciences, 2021, 22 (15) : 7869. |
[46] | Chen L C, Cheng Y P, Liu C Y, et al. Lithosepermic acid restored the skin barrier functions in the imiquimod-induced psoriasis-like animal model[J]. International Journal of Molecular Sciences, 2022, 23 (11) : 6172. |
[47] | Xia Y, Zhang H, Wu X, et al. Resveratrol activates autophagy and protects from UVA-induced photoaging in human skin fibroblasts and the skin of male mice by regulating the AMPK pathway[J]. Biogerontology, 2024: 1-16. |
[48] | Lee Y, Shin K, Shin K O, et al. Topical application of autophagy-activating peptide improved skin barrier function and reduced acne symptoms in acne-prone skin[J]. Journal of Cosmetic Dermatology, 2021, 20 (3) : 1009-1016. |
[49] |
Seo S H, Jung J Y, Park K, et al. Autophagy regulates lipid production and contributes to the sebosuppressive effect of retinoic acid in human SZ95 sebocytes[J]. Journal of Dermatological Science, 2020, 98 (2) : 128-136.
doi: S0923-1811(20)30134-1 pmid: 32354609 |
[50] |
代歆悦, 莫子茵, 高爱莉, 等. 茶多酚诱导的Nrf2通路和自噬在痤疮发病机制中的作用[J]. 皮肤性病诊疗学杂志, 2019, 26 (2) : 117-120.
doi: 10.3969/j.issn.1674-8468.2019.02.016 |
[51] | Wible D J, Bratton S B. Reciprocity in ROS and autophagic signaling[J]. Current Opinion in Toxicology, 2018, 7: 28-36. |
[52] | Pincha D S M F, Mei J P, Kyoung A K, et al. Hesperidin protects human HaCaT keratinocytes from particulate matter 2.5-induced apoptosis via the inhibition of oxidative stress and autophagy[J]. Antioxidants, 2022, 11 (7) : 1363. |
[53] | Han S, Liu P, Yan Q, et al. Seawater pearl hydrolysate inhibits photoaging via decreasing oxidative stress, autophagy and apoptosis of Ultraviolet B-induced human skin keratinocytes[J]. Journal of Cosmetic Dermatology, 2024, 23 (1) : 256-270. |
[1] | Xu Gong, Jing Sun, Youlong Feng. Determination of 7 prostaglandin analogsin eyelash-related cosmetics by UPLC-QTRAP-MS/MS [J]. China Surfactant Detergent & Cosmetics, 2025, 55(6): 811-816. |
[2] | Yajun Yang, Chang Liu. Research on packaging design and application of women’s daily cosmetics based on emotional perspective [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 659-667. |
[3] | Ting Li, Ziying Ma, Jiquan Liu, Shenghui Cui, Yu Jing, Feirong Bai, Su Yao. Establishment and feasibility study of a dual enrichment system for amplified ATP bioluminescence microbial detection assay in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 668-676. |
[4] | Pinyi Ma, Jingkang Li, Dejiang Gao, Daqian Song. MOFs-Functionalized melamine sponge columns combined with high-performance liquid chromatography for determination of parabens in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 548-553. |
[5] | Weidong Huang. Determination of 10 indicative components from plant materials in whitening cosmetics by UPLC-MS/MS [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 531-538. |
[6] | Wucheng Yang, Yu Xie, Jian Wei, Ruifang Fan, Jianhua Tan, Shaofeng Xi. Application of confocal Raman spectroscopy in the evaluation of skin barrier function and permeability [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 508-515. |
[7] | Yunping Lan, Zhijie Xie, Chujie Zhao, Xiaochun Liu, Shiqiong Wang, Qiuxing He. The research progress and regulation of cosmetic ingredients produced by synthetic biology at home and abroad [J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 367-380. |
[8] | Huabing Zhao, Yingtian Li, Xihan Wang, Zhengmei Huang, Fuping Lu. Skin microecology and microecological skincare products [J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 390-398. |
[9] | Keran Feng, Xiaoming Wu, Liangbo Ma, Yu Sun. Determination of 21 nonsteroidal anti-inflammatory drugs in cosmetics by high performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 399-406. |
[10] | Chujie Zhao,Liqing Wu,Qiuxing He,Zheng Yang,Lvyangguang Ye,Lihong Yuan. Current status of sea cucumber aquaculture and the research progress on skincare benefits in China [J]. China Surfactant Detergent & Cosmetics, 2025, 55(2): 225-234. |
[11] | Xu Gong,Xuejing Liu,Shu Shang,Jianhua Xiang,Li Wu,Youlong Feng,Fang Fang. Determination of 16 fluorescent whitening agents in cosmetics by ultra performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2025, 55(2): 244-252. |
[12] | Jiaxin Zheng, Chunyan Min, Hui Lu, Linling Lu, Changping Jia. Determination of meprednisone and nine analogues in cosmetics by UPLC-ESI-Q-TOF/MS [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 110-116. |
[13] | Qiuyan Zhang, Juntao Liao, Weiwei Liang, Fang Huang, Huiqin Wu, Huitai Luo. Determination of 14 thiazides in cosmetics by ultra high performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 117-124. |
[14] | Fan Zhang, Dongqin He, Qianjin Bian, Fan Wu, Yi Qin, Yao Pan. Study on the anti-melanogenesis effect of vitamin C based on cellular autophagy [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 83-88. |
[15] | Xia Wen, Jing Feng, Jingxia Liu, Jian Xu, Xianghai Chen, Xiaobao Xie. Research progress of Staphylococcus epidermidis applied in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 89-97. |
|