China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (6): 700-708.doi: 10.3969/j.issn.2097-2806.2025.06.003
• Basic research • Previous Articles Next Articles
Yujiang Wang1,Longhao Tang2,Xiaoqian Liu3,Ning Feng3,*(),Hongguang Li3,*(
)
Received:
2024-07-15
Revised:
2025-05-27
Online:
2025-06-22
Published:
2025-07-01
Contact:
E-mail: CLC Number:
Yujiang Wang, Longhao Tang, Xiaoqian Liu, Ning Feng, Hongguang Li. Particulated polyether: A novel defoamer for nonaqueous foams[J].China Surfactant Detergent & Cosmetics, 2025, 55(6): 700-708.
Fig. 1
Preparation of L64-PPE and the illustrated structures of targeted products (a); HRTEM image of L64-PPE, the inset shows lattice fringe of its carbonized core (scale bar: 2 nm) (b); FT-IR spectra of CA, L64 and L64-PPE (c); 1H-NMR spectra of L64 andL64-PPE in D2O (d); SAXS results of L64 and L64-PPE (e); viscosity-temperature curves of L64 and L64-PPE (f); surface tension curves of aqueous solutions of L64 and L64-PPE (g)"
Fig. 3
Photos of the samples with L64-PPE and L64 taken at different stages of the defoaming experiment (with stirring) (a); variation of foamvolume with time after adding the defoamers, with (b) or without (c) stirring; photos of the samples taken 1 h after the addition of defoamers L64-PPE or L64, without stirring (d). The mass fraction of TEAO in the foaming system is 95%"
Fig. 4
Optical microscope images of the foams produced from the system containing 95% TEAO with and without defoamers, recorded at 5 min (a); variation of the conductivity of foams with time for the three samples (b); variation of viscosity with shear rate for the three samples after completely defoamed (c); polarized optical microscopy image of the sample containing L64-PPE after completely defoamed (d)"
Fig. 5
Molecular structure of F127 and the photos taken during the defoaming test of F127-PPE (a); molecular structure of M2070 and the photos taken during the defoaming test of M2070-PPE (b); statistics of the defoamed ratios of different PPE with stirring (c). For comparison, data for the three linear PE and a typical organosilicone defoamer (LF26) are also given"
Fig. 6
Photos of the oil foams, with the volume listed below each sample (a). Ⅰ: The crude oil after foaming (i.e., the standing time is 0);Ⅱ: The foamed sample after standing for 20 min; Ⅲ: The sample after addition of 200 μL 1% (w/%) L64-PPE and stirred for 1 min; Ⅳ: The sample after addition of 200 μL 1% (w/%) M2070-PPE and stirred for 1 min. Statistics of the deformed ratios of samplesⅡ- Ⅳ (b)"
[1] | Chandran Suja V, Kar A, Cates W, et al. Foam stability in filtered lubricants containing antifoams[J]. Journal of Colloid and Interface Science, 2020, 567: 1-9. |
[2] | 林雪松. 某区块泡沫油形成机理及分布规律研究[D]. 大庆: 东北石油大学, 2018. |
[3] |
Lombardi Lombardi, Roig Sanchez Soledad, Bapat Amar, et al. Nonaqueous foam stabilization mechanisms in the presence of volatile solvents[J]. Journal of Colloid and Interface Science, 2023, 648: 46-55.
doi: 10.1016/j.jcis.2023.05.156 pmid: 37295369 |
[4] |
Fameau Anne Laure, Saint Jalmes Arnaud. Non-aqueous foams: Current understanding on the formation and stability mechanisms[J]. Advances in Colloid and Interface Science, 2017, 247: 454-464.
doi: S0001-8686(16)30383-9 pmid: 28245904 |
[5] | 胡楠, 胡明明, 李志鑫, 等. 消泡剂的研究进展与展望[J]. 盐科学与化工, 2021, 50: 10-16. |
[6] | 王敏, 郭睿, 张凯峰, 等. 有机硅消泡剂的合成与应用[J]. 精细化工, 2017, 34: 274-278. |
[7] | 窦尹辰. 不同结构聚醚改性硅油的制备与消泡性能研究[D]. 西安: 陕西科技大学, 2014. |
[8] | J·J·托曼, D·J·奥里尔, G·南斯基维尔, 等. 低起泡蒸馏物燃料调合物: CN200680025838.X[P]. 2008-10-01. |
[9] | Cevada Enrique, Fuentes Jessica V, Zamora Edgar Benedicto, et al. Effect of the chemical structure of alkyl acrylates on their defoaming activity in crude oil: experimental and theoretical studies[J]. Energy & Fuels, 2021, 35 (10) : 9047-9058. |
[10] | Fraga Assis K, Souza Luiz F I, Magalhães Jeniffer Rayane, et al. Development and evaluation of oil in water nanoemulsions based on polyether silicone as demulsifier and antifoam agents for petroleum[J]. Journal of Applied Polymer Science, 2014, 131 (20) : 40889. |
[11] | Xin Xia, Xu Guiying, Zhao Taotao, et al. Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer[J]. Journal of Physical Chemistry C, 2008, 112: 16377-16384. |
[12] | Xin Xia, Xu Guiying, Zhang Zhiqing, et al. Aggregation behavior of star-like PEO-PPO-PEO block copolymer in aqueous solution[J]. European Polymer Journal, 2007, 43: 3106-3111. |
[13] | Yang Shan, Zhang Zhiqing, Wang Fang, et al. Surface properties and aggregation behaviors of amphiphilic highly-branched block polyethers in aqueous solution[J]. Journal of Polymer Research, 2013, 20: 205. |
[14] | 史松, 燕永利, 奚琪, 等. 三乙醇胺油酸酯/对二甲苯溶致液晶的泡沫性能研究[J]. 应用化工, 2022, 51 (5) : 1248-1251, 1255. |
[15] | 中国石化集团胜利石油管理局. 原油消泡剂通用技术条件: Q/SH1020 2194—2013[S]. 东营: 中国石化集团胜利石油管理局, 2013: 7. |
[16] | Kasprzyk Wiktor, Świergosz Wiktor, Romanczyk Piotr P, et al. The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives[J]. Nanoscale, 2022, 14 (39) : 14368-14384. |
[17] | Georgakopoulos C G, Statheropoulos M, Montaudo G. Pyrolysis pathways of polyethers and a method for the interpretation of the pyrolysis mass spectra of polyethers[J]. Polymer Degradation and Stability, 1998, 61 (3) : 481-491. |
[18] | Danil W Boukhvalov, Vladimir Yu Osipov, Danatbek Murzalinov, et al. A comprehensive model of carbon nanodots with 0.21 nm lattice fringes patterns[J]. Carbon, 2024, 225: 119101. |
[19] |
Ludmerczki Robert, Malfatti Luca, Stagi Luigi, et al. Polymerization-driven photoluminescence in alkanolamine-basedc-dots[J]. Chemistry-A European Journal, 2021, 27: 2543-2551.
doi: 10.1002/chem.202004465 pmid: 33196126 |
[20] |
Mondjinou Yawo A, Loren Bradley P, Collins Christopher J, et al. Gd3+: DOTa-modified 2-hydroxypropyl-β-cyclodextrin/4-sulfobutyl ether-β-cyclodextrin-based polyrotaxanes as long circulating high relaxivity mri contrast agents[J]. Bioconjugate Chemistry, 2018, 29 (11) : 3550-3560.
doi: 10.1021/acs.bioconjchem.8b00525 pmid: 30403467 |
[21] | Zhang Qing, Wang Ruoyu, Feng Bowen, et al. Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation[J]. Nature Communication, 2021, 12: 6856-6869. |
[22] | Li Jun, Ni Xiping, Zhou Zhihan, et al. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide) -poly(ethylene oxide) -poly(propylene oxide) triblock copolymers and α-cyclodextrin [J]. Journal of the American Chemical Society, 2003, 125 (7) : 1788-1795. |
[23] | Mai Yiyong, Zhou Yongfeng, Yan Deyue, et al. Quantitative dependence of crystallinity on degree of branching for hyperbranched poly[3-ethyl-3- (hydroxymethyl) oxetane][J]. New Journal of Physics, 2005, 7: 42. |
[24] | Zhu Xinyuan, Zhou Yongfeng, Yan Deyue. Influence of branching architecture on polymer properties[J]. Journal of Polymer Science Part B-Polymer Physics, 2011, 49 (18) : 1277-1286. |
[25] | Magnusson Helene, Malmström Eva, Hult Anders, et al. The effect of degree of branching on the rheological and thermal properties of hyperbranched aliphatic polyethers[J]. Polymer, 2002, 43 (2) : 301-306. |
[26] | Alexandridis Paschalis, Alan T Hatton. Poly(ethylene oxide)-poly(propylene oxide) -poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96: 1-46. |
[27] | Friberg S E, Wohn C S, Greene B, et al. A nonaqueous foam with excellent stability[J]. Journal of Colloid and Interface Science, 1984, 101 (2) : 593-595. |
[28] | 王莉娟, 张高勇, 董金凤, 等. 泡沫性能的测试和评价方法进展[J]. 日用化学工业, 2005, 35 (3) : 171-173, 191. |
[29] | Heymans Robbe, Tavernier Iris, Dewettinck Koen, et al. Crystal stabilization of edible oil foams[J]. Trends in Food Science & Technology, 2017, 69: 13-24. |
[30] | Zhang Qi, Zuo Lili, Wu Changchun, et al. The evolution and influence factors of CO2 flooding crude oil defoaming behavior after depressurization[J]. Journal of Petroleum Science and Engineering, 2021, 206: 108996. |
[1] | Ping Li, Zhengwei Zhang, Jie Chai, Peiyu Ren, Shuoyu Wang, Jiayi Sun. Synthesis and properties of oleyl alcohol alkoxylates [J]. China Surfactant Detergent & Cosmetics, 2025, 55(5): 591-600. |
[2] | Fei Yan, Cheng Ma, Zhicheng Xu, Qingtao Gong, Lei Zhang, Lu Zhang. Study on the foam properties of extended anionic surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 415-421. |
[3] | Xiaobin Kang, Yaning Qu, Baopeng Ma. Performance evaluation of inorganic gel enhanced in-situ foam profile control system [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 481-486. |
[4] | Jiabao Fan, Weiwei Han, Yanqiang Liu, Qiang Liu, Hongmiao Lv, Sanbao Dong. Research progress of foam drainage agents for gas well deliquification [J]. China Surfactant Detergent & Cosmetics, 2025, 55(4): 495-507. |
[5] | Hong Yang, Kang Yang, Ying Liu, Zhenzhen Shen, Kai Liu, Fangna Liu, Zhangchao Wang. Study on the adaptability of CO2 composite channeling plugging system in fractured ultra-low permeability reservoirs [J]. China Surfactant Detergent & Cosmetics, 2025, 55(3): 305-312. |
[6] | Hao Xu,Yongli Yan,Hui Liu,Bingcheng He. Study on the drainage behavior of mixed aqueous-and-oil foam [J]. China Surfactant Detergent & Cosmetics, 2025, 55(2): 154-161. |
[7] | Yuqiang Zhang,Xuhong Jia,Xinhua Zhu. Study on the effect of temperature on the performance of zwitterionic fluorocarbon surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(2): 162-169. |
[8] | Yanfu Zhou, Xuguang Wang, Feifei Wang. Study on the foam properties of common surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 26-33. |
[9] | Nana Wang, Xiumei Tai, Tao Geng, Liang Zhang, Sai Li, Lingxiao Guo. Study on the effects of trisodium methylglycine diacetate on the application properties of different types of surfactants [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 34-40. |
[10] | Siqi Yao,Yongli Yan,Suiwang Zhang,Yu Chen,Bingcheng He. Study on the non-aqueous foams stabilized by the modified nano-SiO2 particles [J]. China Surfactant Detergent & Cosmetics, 2024, 54(8): 903-910. |
[11] | Limei Sun, Haifeng He, Shenfa An, Zhiyong Luan, Peng Sun, Yang Wang, Feng Yan. Study on the emulsion-breaking performance of cross-linked polyether demulsifiers for the emulsion produced by surfactant/polymer flooding in Shengli oilfield [J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 795-802. |
[12] | Tingting Gao, Yongli Yan, Suiwang Zhang, Yu Chen, Bingcheng He. Study on the drainage behavior of non-aqueous foams stabilized by nano-silica particles [J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 751-758. |
[13] | Fan Bai, Yongli Yan, Jiangbo Liu, Ayong Yan, Bingcheng He. Effects of oil on the formation and stability of aqueous foam [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 630-639. |
[14] | Xudong Fang, Yongli Yan, Jiangbo Liu, Ayong Yan, Bingcheng He. Research progress on the stabilization of oil-water miscible foams [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 698-707. |
[15] | Haifeng He, Limei Sun, Fengbin Yang, Lingfeng Liu, Gang Wang, Bin Yu, Da Wu. Studies on the structure-function relationship of polyether-type demulsifiers based on density functional theory [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 499-506. |
|