China Surfactant Detergent & Cosmetics ›› 2025, Vol. 55 ›› Issue (1): 89-97.doi: 10.3969/j.issn.2097-2806.2025.01.011
• Reviews • Previous Articles Next Articles
Xia Wen1,Jing Feng1,Jingxia Liu1,Jian Xu2,Xianghai Chen3,Xiaobao Xie1,*()
Received:
2024-02-22
Revised:
2024-12-30
Online:
2025-01-22
Published:
2025-01-23
Contact:
E-mail: CLC Number:
Xia Wen, Jing Feng, Jingxia Liu, Jian Xu, Xianghai Chen, Xiaobao Xie. Research progress of Staphylococcus epidermidis applied in cosmetics[J].China Surfactant Detergent & Cosmetics, 2025, 55(1): 89-97.
[1] |
Byrd A L, Belkaid Y, Segre J A. The human skin microbiome[J]. Nature Reviews Microbiology, 2018, 16 (3) : 143-155.
doi: 10.1038/nrmicro.2017.157 pmid: 29332945 |
[2] |
Parlet C P, Brown M M, Horswill A R. Commensal Staphylococci influence Staphylococcus aureus skin colonization and disease[J]. Trends in Microbiology, 2019, 27 (6) : 497-507.
doi: S0966-842X(19)30021-6 pmid: 30846311 |
[3] | Namvar A E, Bastarahang S, Abbasi N, et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review[J]. GMS Hygiene and Infection Control, 2014, 9 (3) : 1-10. |
[4] |
Mack D, Fischer W, Krokotsch A, et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis[J]. Journal of Bacteriology, 1996, 178 (1) : 175-183.
doi: 10.1128/jb.178.1.175-183.1996 pmid: 8550413 |
[5] | Vuong C, Voyich J M, Fischer E R, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system[J]. Cellular Microbiology, 2004, 6 (3) : 269-275. |
[6] | Kocianova S, Vuong C, Yao Y, et al. Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis[J]. The Journal of Clinical Investigation, 2005, 115 (3) : 688-694. |
[7] | Oppermann-Sanio F B, Steinbüchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production[J]. The Science of Nature, 2002, 89: 11-22. |
[8] | Rogers K L, Fey P D, Rupp M E. Coagulase-negative Staphylococcal infections[J]. Infectious Disease Clinics of North America, 2009, 23 (1) : 73-98. |
[9] | Byrd A L, Deming C, Cassidy S K B, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis[J]. Science Translational Medicine, 2017, 9 (397) : 1-22. |
[10] | Méric G, Mageiros L, Pensar J, et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis[J]. Nature Communications, 2018, 9 (1) : 5034. |
[11] |
Zhou W, Spoto M, Hardy R, et al. Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin[J]. Cell, 2020, 180 (3) : 454-470.
doi: S0092-8674(20)30053-2 pmid: 32004459 |
[12] |
Hussain M, Herrmann M, von Eiff C, et al. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces[J]. Infection and Immunity, 1997, 65 (2) : 519-524.
doi: 10.1128/iai.65.2.519-524.1997 pmid: 9009307 |
[13] | Otto M. Staphylococcus epidermidis: the “accidental” pathogen[J]. Nature Reviews Microbiology, 2009, 7 (8) : 555-567. |
[14] |
Foster T J. The MSCRAMM family of cell-wall-anchored surface proteins of gram-positive cocci[J]. Trends in Microbiology, 2019, 27 (11) : 927-941.
doi: S0966-842X(19)30162-3 pmid: 31375310 |
[15] | Foster T J. Surface proteins of Staphylococcus epidermidis[J]. Frontiers in Microbiology, 2020, 11: 1829. |
[16] | Severn M M, Horswill A R. Staphylococcus epidermidis and its dual lifestyle in skin health and infection[J]. Nature Reviews Microbiology, 2023, 21 (2) : 97-111. |
[17] | Shi G, Kang X, Dong F, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides[J]. Nucleic Acids Research, 2022, 50: 1-8. |
[18] |
Cogen A L, Yamasaki K, Sanchez K M, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin[J]. Journal of Investigative Dermatology, 2010, 130 (1) : 192-200.
doi: 10.1038/jid.2009.243 pmid: 19710683 |
[19] | Nakatsuji T, Chen T H, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis[J]. Science Translational Mmedicine, 2017, 9 (378) : 1-22. |
[20] | Naik S, Bouladoux N, Linehan J L, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature[J]. Nature, 2015, 520 (7545) : 104-108. |
[21] | Lai Y, Cogen A L, Radek K A, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections[J]. Journal of Investigative Dermatology, 2010, 130 (9) : 2211-2221. |
[22] | Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host & Microbe, 2020, 27 (1) : 68-78. |
[23] |
Linehan J L, Harrison O J, Han S J, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair[J]. Cell, 2018, 172 (4) : 784-796.
doi: S0092-8674(17)31513-1 pmid: 29358051 |
[24] |
Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals[J]. Science, 2012, 337 (6098) : 1115-1119.
doi: 10.1126/science.1225152 pmid: 22837383 |
[25] | Constantinides M G, Link V M, Tamoutounour S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair[J]. Science, 2019, 366 (6464) : 1-30. |
[26] | Pastar I, O’Neill K, Padula L, et al. Staphylococcus epidermidis boosts innate immune response by activation of gamma delta T cells and induction of perforin-2 in human skin[J]. Frontiers in Immunology, 2020, 11: 1-12. |
[27] |
Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury[J]. Nature Medicine, 2009, 15 (12) : 1377-1382.
doi: 10.1038/nm.2062 pmid: 19966777 |
[28] | Li D, Wang W, Wu Y, et al. Lipopeptide 78 from Staphylococcus epidermidis activates β-catenin to inhibit skin inflammation[J]. The Journal of Immunology, 2019, 202 (4) : 1219-1228. |
[29] |
Skabytska Y, Biedermann T. Staphylococcus epidermidis sets things right again[J]. Journal of Investigative Dermatology, 2016, 136 (3) : 559-560.
doi: S0022-202X(15)00084-6 pmid: 26902125 |
[30] | Negari I P, Keshari S, Huang C M. Probiotic activity of Staphylococcus epidermidis induces collagen type Ⅰ production through FFaR2/p-ERK Signaling[J]. International Journal of Molecular Sciences, 2021, 22 (3) : 1414. |
[31] | Zheng Y, Hunt R L, Villaruz A E, et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides[J]. Cell Host & Microbe, 2022, 30 (3) : 301-313. |
[32] | O’Gara J P. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections[J]. Environmental Microbiology, 2017, 19 (10) : 3823-3833. |
[33] | Nodake Y, Matsumoto S, Miura R, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe-a blinded randomized clinical trial[J]. Journal of Dermatological Science, 2015, 79 (2) : 119-126. |
[34] |
Linehan J L, Harrison O J, Han S J, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair[J]. Cell, 2018, 172 (4) : 784-796.
doi: S0092-8674(17)31513-1 pmid: 29358051 |
[35] | Harrison O J, Linehan J L, Shih H Y, et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury[J]. Science, 2019, 363 (6422) : 1-27. |
[36] | Luqman A, Muttaqin M Z, Yulaipi S, et al. Trace amines produced by skin bacteria accelerate wound healing in mice[J]. Communications Biology, 2020, 3 (1) : 277. |
[37] | Uberoi A, Bartow-McKenney C, Zheng Q, et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor[J]. Cell Host & Microbe, 2021, 29 (8) : 1235-1248. |
[38] | Cichorek M, Wachulska M, Stasiewicz A, et al. Skin melanocytes: biology and development[J]. Advances in Dermatology and Allergology, 2013, 30 (1) : 30-41. |
[39] | de Gruijl F R, van Kranen H J, Mullenders L H F. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer[J]. Journal of Photochemistry and Photobiology B: Biology, 2001, 63: 19-27. |
[40] | Wang Z, Choi J E, Wu C C, et al. Skin commensal bacteria Staphylococcus epidermidis promote survival of melanocytes bearing UVB-induced DNA damage, while bacteria Propionibacterium acnes inhibit survival of melanocytes by increasing apoptosis[J]. Photodermatology, Photoimmunology & Photomedicine, 2018, 34 (6) : 405-414. |
[41] | Nakatsuji T, Chen T H, Butcher A M, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia[J]. Science Advances, 2018, 4 (2) : 1-9. |
[42] | Keshari S, Balasubramaniam A, Myagmardoloonjin B, et al. Butyric acid from probiotic Staphylococcus epidermidis in the skin microbiome down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor[J]. International Journal of Molecular Sciences, 2019, 20 (18) : 4477. |
[43] | Nodake Y, Matsumoto S, Miura R, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe-a blinded randomized clinical trial[J]. Journal of Dermatological Science, 2015, 79 (2) : 119-126. |
[44] | Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production[J]. Cell Host & Microbe, 2020, 27 (1) : 68-78. |
[45] |
Sugimoto S, Iwamoto T, Takada K, et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction[J]. Journal of Bacteriology, 2013, 195 (8) : 1645-1655.
doi: 10.1128/JB.01672-12 pmid: 23316041 |
[46] |
Saxena R, Mittal P, Clavaud C, et al. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 346.
doi: 10.3389/fcimb.2018.00346 pmid: 30338244 |
[47] | Russell-Goldman E, Murphy G F. The pathobiology of skin aging: new insights into an old dilemma[J]. The American Journal of Pathology, 2020, 190: 1356-1369. |
[48] |
Heilbronner S, Krismer B, Brötz-Oesterhelt H, et al. The microbiome-shaping roles of bacteriocins[J]. Nature Reviews Microbiology, 2021, 19 (11) : 726-739.
doi: 10.1038/s41579-021-00569-w pmid: 34075213 |
[49] | Sandiford S, Upton M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci [J]. Antimicrobial Agents and Chemotherapy, 2012, 56 (3) : 1539-1547. |
[50] | Janek D, Zipperer A, Kulik A, et al. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors[J]. PLoS Pathogens, 2016, 12 (8) : 1-20. |
[51] |
Ekkelenkamp M B, Hanssen M, Hsu S T D, et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis[J]. FEBS Letters, 2005, 579 (9) : 1917-1922.
pmid: 15792796 |
[52] | Wang Y, Kuo S, Shu M, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris[J]. Applied Microbiology and Biotechnology, 2014, 98: 411-424. |
[53] | Wang Y, Kao M S, Yu J, et al. A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes[J]. International Journal of Mmolecular Sciences, 2016, 17 (11) : 1870. |
[54] | Kaneko A, Kondo S. A new cosmetic SOD delivery system using skin surface resident Staphylococcus epidermidis by lotions containing Mn/Zn ions[J]. Drug Delivery System Osaka Then Tokyo, 1997, 12: 339-346. |
[55] | Williams M R, Costa S K, Zaramela L S, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis[J]. Science Translational Medicine, 2019, 11 (490) : 1-24. |
[56] | Chin D, Goncheva M I, Flannagan R S, et al. Coagulase-negative staphylococci release a purine analog that inhibits Staphylococcus aureus virulence[J]. Nature Communications, 2021, 12 (1) : 1887. |
[57] | Dodds D, Bose J L, Deng M D, et al. Controlling the growth of the skin commensal Staphylococcus epidermidis using D-alanine auxotrophy[J]. Msphere, 2020, 5 (3) : 1-13. |
[58] |
Chen Y E, Bousbaine D, Veinbachs A, et al. Engineered skin bacteria induce antitumor T cell responses against melanoma[J]. Science, 2023, 380 (6641) : 203-210.
doi: 10.1126/science.abp9563 pmid: 37053311 |
[1] | Jiaxin Zheng, Chunyan Min, Hui Lu, Linling Lu, Changping Jia. Determination of meprednisone and nine analogues in cosmetics by UPLC-ESI-Q-TOF/MS [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 110-116. |
[2] | Qiuyan Zhang, Juntao Liao, Weiwei Liang, Fang Huang, Huiqin Wu, Huitai Luo. Determination of 14 thiazides in cosmetics by ultra high performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 117-124. |
[3] | Xiaomin Sun, Shixiang Zuo, Yaoyao Yu, Xin Wu, Yue Cai, Chao Yao. Preparation and properties of effective UV-shielding materials based on flake-shaped ZnO [J]. China Surfactant Detergent & Cosmetics, 2025, 55(1): 55-62. |
[4] | Jian Wang, Yuhui Fan, Danfeng Li, Ningwen Cheng, Ling Li, Yufeng Yu. Skin care efficacy study of recombinant humanized collagen based on in vitro level [J]. China Surfactant Detergent & Cosmetics, 2024, 54(9): 1030-1038. |
[5] | Xiaopeng You, Ning Peng, Zhixian Chen. Study on the efficacy of yeast/zinc fermentation products in scalp care [J]. China Surfactant Detergent & Cosmetics, 2024, 54(9): 1099-1105. |
[6] | Ping Liu, Lei Cheng. Determination of Pb, As and Hg contents in powder cosmetics by hydride generation-non-dispersive atomic fluorescence spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(9): 1140-1144. |
[7] | Yueming Jiang, Wenjia Lu, Xin Qu. Effect of sandalwood extract on olfactory receptor and its clinical efficacy [J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 828-835. |
[8] | Jiaojiao Wu, Wei Zhang, Yanchao Wang, Xinrong Pei. Safety evaluation progress of three kinds of arbutin and its current status in cosmetics regulations [J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 853-858. |
[9] | Changzhao Wang, Zihao Li, Yixin Wang, Yue Yang. Determination of 5 whitening agents in cosmetics using UPLC-MS/MS [J]. China Surfactant Detergent & Cosmetics, 2024, 54(7): 873-878. |
[10] | Keming Zhang, Xuenian Liu, Ming Deng, Yixiang Lu, Yangbiao Xu. Determination of nine nitrobenzene compounds in cosmetics by ultra performance liquid chromatography quadrupole-time-of-flight mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 744-750. |
[11] | Laicheng Chen, Dongjie Chen, Jie Zou, Hong Ding, Yupeng Ye, Zhanhong Yang. Study on antioxidant and whitening effects of Anoectochilus roxburghii fermentation broth [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 656-662. |
[12] | Mingxuan Zhang, Peipei Xu, Donghui Sui. Formula design and performance study of a long-term antibacterial laundry detergent [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 663-668. |
[13] | Yuxiang Gu, Yu Zhou, Shu Liu. Current status and analysis of physicochemical testing methods for evaluating the efficacy of skin care cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 727-732. |
[14] | Yuxin Song, Linlin Xu, Yao Tong, Kun Dong, Congfen He. Optimization and application of anti-glycation (in vitro) evaluation method based on the thermal glycation method [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 558-565. |
[15] | Yang Song, Yongbo Lv, Hankun Ren, Jiaolong Peng. Study on the mechanism and efficacy of controlling oil and shrinking pores in fermentation broth of Fomes officinalis [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 566-573. |
|