China Surfactant Detergent & Cosmetics ›› 2024, Vol. 54 ›› Issue (7): 844-852.doi: 10.3969/j.issn.2097-2806.2024.07.012
• Reviews • Previous Articles Next Articles
Xiujun Gu1,Ping Luo1,Chengjian Cai1,Dejun Yang1,Jiachao Jiang1,2,Jing Yang3,*()
Received:
2023-08-09
Revised:
2024-06-24
Online:
2024-07-22
Published:
2024-07-26
Contact:
*E-mail: 13685127761@163.com.
CLC Number:
Xiujun Gu, Ping Luo, Chengjian Cai, Dejun Yang, Jiachao Jiang, Jing Yang. Aggregation and dissolution behavior of silver nanoparticles in laundry wastewater: A review[J].China Surfactant Detergent & Cosmetics, 2024, 54(7): 844-852.
Tab. 1
Content of each component in laundry wastewater"
指标 | 质量浓度(除pH值外, 单位均为mg/L) | 参考文献 |
---|---|---|
pH | 7~12 | [ |
LAS | 12.24~1 023.7 | [ |
Ca2+ | 6.62~24.8 | [ |
Mg2+ | 2.14~12.64 | [ |
K+ | 1.63~7.4 | [ |
Na+ | 2.49~145 | [ |
Cl- | 23.8~3 290 | [ |
PO43- | 0.009~332 | [ |
SO42- | 0.7~595 | [ |
Tab. 2
Effects of laundry wastewater on the agglomeration and dissolution behavior of AgNPs"
洗涤条件 | AgNPs的团聚和/或溶解行为 | 参考文献 |
---|---|---|
表面活性剂 | 当表面活性剂的浓度足以使AgNPs的Zeta电位绝对值<20 mV时,AgNPs将发生团聚; 反之AgNPs则保持在稳定状态,不产生团聚 | [ |
氧化剂 | 加速AgNPs的氧化,促进其溶解 | [ |
光照 | 使化学结合在纺织品上的AgNPs更加稳定,减缓AgNPs溶解; 可将已溶解的银离子还原为不易溶解的、较好的结晶AgNPs,使其附在织物上,从而降低总银的释放量 | [ |
pH值 | 对于Citrate-AgNPs,高pH值会使Citrate-AgNPs保持在分散状态,不产生团聚; 对于空间位阻稳定的PVP-AgNPs,碱性条件可能对PVP-AgNPs的团聚粒径并无影响; 对于静电斥力和空间位阻共同稳定的BPEI-AgNPs,高pH值会使BPEI-AgNPs发生团聚 | [ |
无机阳离子 | 可以与Citrate-AgNPs表面的羧基络合,屏蔽表面电荷,削弱颗粒-颗粒和颗粒-界面排斥静电力,致使AgNPs团聚,粒径增加 | [ |
无机阴离子 | 当Cl/Ag比值≤535时,Citrate-AgNPs团聚增强;当Cl/Ag比值<2 675时,AgNPs的溶解受到抑制; 当Cl/Ag比值≥2 675时,AgClx (x-1) -等的生成会进一步促进AgNPs的溶解; PO43-可以取代柠檬酸盐涂层并通过其氧原子与AgNPs表面结合,从而产生磷酸盐包覆的AgNPs ((20±0.2) nm),它比Citrate-AgNPs((24.5±0.1) nm)更稳定,粒径更小; SO42-会引起硫酸盐还原的AgNPs的团聚 | [ |
Tab. 3
At pH of 10, the effects of three types of surfactants on the Zeta potential and stable state of silver nanoparticles which were reduced by sodium borohydride. Initial Zeta potential of AgNPs is (-58±1)mV [16]"
表面活性剂类型 | 表面活性剂浓度 | AgNPs的Zeta电位/mV | AgNPs 状态 |
---|---|---|---|
阴离子表面活性剂LAS | 0.1 mmol/L | -70±2 | 分散 |
5 mmol/L | -72±2 | 分散 | |
阳离子表面活性剂DTAC | 0.1 mmol/L | -22±1 | 分散 |
5 mmol/L | 37±1 | 分散 | |
非离子表面活性剂Berol | 5 μmol/L | -56±1 | 分散 |
5 mmol/L | -7±0.2 | 团聚 |
[1] | Wu Y, Yang Y, Zhang Z, et al. Fabrication of cotton fabrics with durable antibacterial activities finishing by Ag nanoparticles[J]. Textile Research Journal, 2019, 89 (5) : 867-880. |
[2] |
Lorenz C, Windler L, von Goetz N, et al. Characterization of silver release from commercially available functional (nano) textiles[J]. Chemosphere, 2012, 89 (7) : 817-824.
doi: 10.1016/j.chemosphere.2012.04.063 pmid: 22677521 |
[3] |
Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms[J]. Water Research, 2016, 88: 403-427.
doi: S0043-1354(15)30290-6 pmid: 26519626 |
[4] | Benn T M, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics[J]. Environmental Science & Technology, 2008, 42 (11) : 4133-4139. |
[5] |
Angel B M, Batley G E, Jarolimek C V, et al. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems[J]. Chemosphere, 2013, 93 (2) : 359-365.
doi: 10.1016/j.chemosphere.2013.04.096 pmid: 23732009 |
[6] | Tolaymat T M, El Badawy A M, Genaidy A, et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers[J]. Science of the Total Environment, 2010, 408 (5) : 999-1006. |
[7] |
Traboulsi H, Awada C. Toward the development of ultrasensitive detectors for environmental applications: A kinetic study of Cr(Ⅲ) monitoring in water using EDTA and SERS techniques[J]. Acs Omega, 2020, 5 (48) : 31352-31361.
doi: 10.1021/acsomega.0c04844 pmid: 33324846 |
[8] | Mdluli P S, Sosibo N M, Mashazi P N, et al. Selective adsorption of PVP on the surface of silver nanoparticles: A molecular dynamics study[J]. Journal of Molecular Structure, 2011, 1004 (1-3) : 131-137. |
[9] | Tan S, Erol M, Attygalle A, et al. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions[J]. Langmuir, 2007, 23 (19) : 9836-9843. |
[10] | Zhou W, Liu Y L, Stallworth A M, et al. Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles[J]. Environmental Science & Technology, 2016, 50 (22) : 12214-12224. |
[11] | Liu J, Hurt R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 2010, 44 (6) : 2169-2175. |
[12] | El Badawy A M, Luxton T P, Silva R G, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions[J]. Environmental Science & Technology, 2010, 44 (4) : 1260-1266. |
[13] | Levard C, Mitra S, Yang T, et al. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli[J]. Environmental Science & Technology, 2013, 47 (11) : 5738-5745. |
[14] | McGeer J C, Playle R C, Wood C M, et al. A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwaters[J]. Environmental Science & Technology, 2000, 34 (19) : 4199-4207. |
[15] | Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing[J]. Environmental Science & Technology, 2009, 43 (21) : 8113-8118. |
[16] |
Hedberg J, Lundin M, Lowe T, et al. Interactions between surfactants and silver nanoparticles of varying charge[J]. Journal of Colloid and Interface Science, 2012, 369: 193-201.
doi: 10.1016/j.jcis.2011.12.004 pmid: 22204969 |
[17] | Braga J K, Varesche M B A. Commercial laundry water characterisation[J]. American Journal of Analytical Chemistry, 2013 (5) : 8-16. |
[18] |
Delforno T P, Moura A G L, Okada D Y, et al. Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors[J]. Bioresource Technology, 2014, 154: 114-121.
doi: 10.1016/j.biortech.2013.11.102 pmid: 24384318 |
[19] | Gu Yonggang, Gao Dan, Bai Huiwen, et al. Survey and countermeasures of typical laundry wastewater pollution in urban area of Beijing[J]. Industrial Water & Wastewater, 2020, 51 (5) : 5-8. |
[20] | Turkay O, Barisci S, Sillanpaa M. E-peroxone process for the treatment of laundry wastewater: A case study[J]. Journal of Environmental Chemical Engineering, 2017, 5 (5) : 4282-4290. |
[21] | Kiendrebeogo M, Ouarda Y, Karimi Estahbanati M R, et al. Nanoplastics removal from spiked laundry wastewater using electro-peroxidation process[J]. Chemosphere, 2023, 341: 139963. |
[22] | Melian E P, Santiago D E, Leon E, et al. Treatment of laundry wastewater by different processes: Optimization and life cycle assessment[J]. Journal of Environmental Chemical Engineering, 2023, 11 (2) : 109302. |
[23] | Vishali S, Poonguzhali E, Banerjee I, et al. Purification of domestic laundry wastewater in an integrated treatment system consists of coagulation and ultrafiltration membrane process[J]. Chemosphere, 2023, 314: 137662. |
[24] | Vasiljevic S, Vujic M, Agbaba J, et al. Efficiency of coagulation/flocculation for the removal of complex mixture of textile fibers from water[J]. Processes, 2023, 11 (3) : 820. |
[25] | Pandey A, Katam K, Joseph P, et al. Micropollutant removal from laundry wastewater in algal-activated sludge systems: microbial studies[J]. Water Air and Soil Pollution, 2020, 231 (7) : 374. |
[26] | Bering S, Mazur J, Tarnowski K, et al. The application of moving bed bio-reactor (MBBR) in commercial laundry waste water treatment[J]. Science of the Total Environment, 2018, 627: 1638-1643. |
[27] | Limpiteeprakan P, Babel S, Lohwacharin J, et al. Release of silver nanoparticles from fabrics during the course of sequential washing[J]. Environmental Science and Pollution Research, 2016, 23 (22) : 22810-22818. |
[28] | Bi Y, Westerband E I, Alum A, et al. Antimicrobial efficacy and life cycle impact of silver-containing food containers[J]. Acs Sustainable Chemistry & Engineering, 2018, 6 (10) : 13086-13095. |
[29] | Mitrano D M, Lombi E, Dasilva Y A R, et al. Unraveling the complexity in the aging of nanoenhanced textiles: A comprehensive sequential study on the effects of sunlight and washing on silver nanoparticles[J]. Environmental Science & Technology, 2016, 50 (11) : 5790-5799. |
[30] | Sato-Berru R, Redon R, Vaquez-Olmos A, et al. Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2009, 40 (4) : 376-380. |
[31] |
Mitrano D M, Rimmele E, Wichser A, et al. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles[J]. Acs Nano, 2014, 8 (7) : 7208-7219.
doi: 10.1021/nn502228w pmid: 24941455 |
[32] | Huynh K A, Chen K L. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions[J]. Environ Sci Technol, 2011, 45 (13) : 5564-5571. |
[33] | Baalousha M, Nur Y, Roemer I, et al. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles[J]. Science of the Total Environment, 2013, 454: 119-131. |
[34] | White P, Hjortkjaer J. Preparation and characterisation of a stable silver colloid for SER(R)S spectroscopy[J]. Journal of Raman Spectroscopy, 2014, 45 (1) : 32-40. |
[35] | Dong B, Liu G, Zhou J, et al. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature[J]. J Hazard Mater, 2020, 383: 121190. |
[36] |
Radwan I M, Potter P M, Dionysiou D D, et al. Silver nanoparticle interactions with surfactant-based household surface cleaners[J]. Environmental Engineering Science, 2021, 38 (6) : 481-488.
doi: 10.1089/ees.2020.0160 pmid: 34675467 |
[37] | Reed R B, Zaikova T, Barber A, et al. Potential environmental impacts and antimicrobial efficacy of silver and nanosilver-containing textiles[J]. Environmental Science & Technology, 2016, 50 (7) : 4018-4026. |
[38] | Falletta E, Bonini M, Fratini E, et al. Clusters of poly(acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics[J]. J Phys Chem C, 2008, 112 (31) : 11758-11766. |
[39] |
Fernando I, Zhou Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles[J]. Chemosphere, 2019, 216: 297-305.
doi: S0045-6535(18)31983-0 pmid: 30384298 |
[40] | Capjak I, Avdicevic M Z, Sikiric M D, et al. Behavior of silver nanoparticles in wastewater: systematic investigation on the combined effects of surfactants and electrolytes in model systems[J]. Environmental Science-Water Research & Technology, 2018, 4 (12) : 2146-2159. |
[41] | Claesson P M, Poptoshev E, Blomberg E, et al. Polyelectrolyte-mediated surface interactions[J]. Advances in Colloid and Interface Science, 2005, 114: 173-187. |
[42] | Beyer P, Nordmeier E. Some phenomena of counterion condensation on dextran sulphate[J]. European Polymer Journal, 1995, 31 (11) : 1031-1036. |
[43] |
Afshinnia K, Sikder M, Cai B, et al. Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics[J]. Journal of Colloid and Interface Science, 2017, 487: 192-200.
doi: S0021-9797(16)30800-1 pmid: 27770683 |
[44] | Moula A, Borgi M A, Loukil S, et al. Assessment of phosphate laundries wastewater phytotoxicity and biotreatment assays[J]. Clean-Soil, Air, Water, 2020, 48 (11) : 2000077. |
[45] | El Badawy A M, Scheckel K G, Suidan M, et al. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles[J]. Sci Total Environ, 2012, 429: 325-331. |
[46] | Furusawa K, Yamamoto K. Adsorption of monodisperse polystyrene onto porous glass: Ⅱ. Study of the exchangeability of adsorbed polymer layer[J]. Journal of Colloid and Interface Science, 1983, 96 (1) : 268-274. |
[47] |
Gebauer J S, Treuel L. Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles[J]. Journal of Colloid and Interface Science, 2011, 354 (2) : 546-554.
doi: 10.1016/j.jcis.2010.11.016 pmid: 21146829 |
[48] |
Li X, Lenhart J J, Walker H W. Dissolution-accompanied aggregation kinetics of silver nanoparticles[J]. Langmuir, 2010, 26 (22) : 16690-16698.
doi: 10.1021/la101768n pmid: 20879768 |
[49] | Afshinnia K, Baalousha M. Effect of phosphate buffer on aggregation kinetics of citrate-coated silver nanoparticles induced by monovalent and divalent electrolytes[J]. Science of the Total Environment, 2017, 581: 268-276. |
[50] | Nielsen A H, Vollertsen J, Jensen H S, et al. Aerobic and anaerobic transformations of sulfide in a sewer system—Field study and model simulations[J]. Water Environment Research, 2008, 80 (1) : 16-25. |
[51] | Radwan I M, Gitipour A, Potter P M, et al. Dissolution of silver nanoparticles in colloidal consumer products: effects of particle size and capping agent[J]. Journal of Nanoparticle Research, 2019, 21 (7) : 155. |
[52] | Cervantes-Aviles P, Huang Y, Keller A A. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater[J]. Water Res, 2019, 166: 115072. |
[53] |
Yang Y, Wang J, Xiu Z, et al. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria[J]. Environmental Toxicology and Chemistry, 2013, 32 (7) : 1488-1494.
doi: 10.1002/etc.2230 pmid: 23554086 |
[54] | Brown J. Impact of silver nanoparticles on wastewater treatment[J]. Nanotechnologies for Environmental Remediation: Applications and Implications, 2017: 255-267. |
[55] | Zheng Y, Hou L, Liu M, et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments[J]. Science Advances, 2017, 3 (8) : 1603229. |
[56] | Hollingsworth M W. Role of detergent builders in fabric washing formulations[J]. Journal of the American Oil Chemists’ Society, 1978, 55 (1) : 49-51. |
[57] | Blaser S A, Scheringer M, MacLeod M, et al. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles[J]. Science of the Total Environment, 2008, 390 (2/3) : 396-409. |
[58] | Jiang J, Wang X, Zhang Y, et al. The aggregation and dissolution of citrate-coated AgNPs in high ammonia nitrogen wastewater and sludge from UASB-anammox reactor[J]. International Journal of Environmental Research and Public Health, 2022, 19 (15) : 9502. |
[59] | Zhang Pengyu, Li Wenyang, Xiao Lintong, et al. Research progress of mechanism and technology for chloride ion removal in water[J]. Water Purification Technology, 2023, 42 (12) : 17-26. |
[1] | Lei Wang, Jun Tian. Synthesis and photocatalytic activity of a CaMoO4 photocatalyst modified with C-O functional groups [J]. China Surfactant Detergent & Cosmetics, 2024, 54(6): 669-676. |
[2] | Longda Du, Litang Qin, Lingyun Mo, Yanpeng Liang, Xiaohong Song, Honghu Zeng. Physiological and biochemical responses of quinolone and tetracycline antibiotics to Chlorella pyrenoidosa [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 542-549. |
[3] | Shaolin Deng, Pengfei Zhou, Yulong Zhu. Advancements in the efficient dissolution methods of hydrophobically associating polymers [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 449-456. |
[4] | Yifan He, Wenhai Wu, Munan Su, Xiaolong Jiang, Yuhong Liu. In vivo molecular mechanism of surfactant-induced skin irritation and skin protection by confocal Raman spectroscopy [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 401-409. |
[5] | Jingxuan Liu, Jianming Jin, Hua Wu. Botanical cosmetic ingredients (VII)Research and development of plant antifungal [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 259-266. |
[6] | Cuicui Hu, Daihong Zhou, Xinwan Chen, Jialing Zhong, Canquan Mao. Efficacies and mechanisms of a formula of Chinese medicinal plants (MHC-20) against Streptococcus pyogenes [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 282-289. |
[7] | Wanping Zhang, Qi Peng, Dongmei Zhang, Shilian Zheng, Wen Jiang, Lihao Gu. Mechanism and research progress of chemical leukoderma induced by 4-substituted phenols [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 320-328. |
[8] | Xiaojie Zhang, Mingzhe Zhang, Zhicheng Xu, Qingtao Gong, Lei Zhang, Lu Zhang. Study on oil displacement mechanism of alkyl carboxyl betaine [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 123-130. |
[9] | An Rui,Zhao Qing. Progress in the adsorption of triclosan in aqueous solution [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 945-953. |
[10] | Tian Shujie, Gao Wei. Optimization and mechanisms of low-temperature demulsifier for produced fluid with light crude oil [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 773-780. |
[11] | Yang Bin. Study on rheological and interfacial properties of a synergistic mixture of hydrophobically associating polymer HAWP and erucamidopropyl allyl ammonium bromide [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 365-372. |
[12] | Liao Jianjun, Li Huabin, Deng Jinpin, He Gang, Liu Sisi, Zhang Xiao. Experimental study on polymer gel profile control and flooding in high-temperature heterogeneous reservoirs [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 373-381. |
[13] | Ren Jiejie. Change in total flavonoid content of hawthorn leaves after adverse stress treatment and the molecular mechanism on myocardial ischemia in rats [J]. China Surfactant Detergent & Cosmetics, 2023, 53(4): 430-436. |
[14] | Tan Qidan, Bi Yongxian, Liu Lei, Hu Xueqing, Dai Xiaoyan. Research status of cosmetic soothing efficacy evaluation [J]. China Surfactant Detergent & Cosmetics, 2023, 53(2): 193-201. |
[15] | Yang Chao, Tong Zhiming, Wang Zhansheng, Chen Wu. Study on the influence mechanisms of polymers and solid particles on the stability of crude oil emulsion [J]. China Surfactant Detergent & Cosmetics, 2023, 53(10): 1156-1165. |
|