China Surfactant Detergent & Cosmetics ›› 2024, Vol. 54 ›› Issue (4): 410-418.doi: 10.3969/j.issn.2097-2806.2024.04.006
• Development and application • Previous Articles Next Articles
Xueer Xu(),Shaodi Jin,Lan Wang
Received:
2023-03-18
Revised:
2024-04-03
Online:
2024-04-22
Published:
2024-04-26
Contact:
*Tel.: +86-17805192316, E-mail: CLC Number:
Xueer Xu, Shaodi Jin, Lan Wang. Preparation and characterization of carvacrol-loaded gliadin-pectin nanoparticles[J].China Surfactant Detergent & Cosmetics, 2024, 54(4): 410-418.
Tab. 1
The particle size, PDI and potential of gliadin/pectin-carvacrol nanoparticles with different salt ion concentrations"
盐离子浓度/(mmol/L) | 粒径/nm | PDI | 电位/mV |
---|---|---|---|
0 | 179.23±2.19a | 0.21±0.02a | -36.42±1.69a |
10 | 240.72±2.38b | 0.30±0.03b | -32.71±1.03b |
20 | 292.36±2.53c | 0.38±0.03c | -27.64±1.09c |
30 | 388.46±2.70d | 0.46±0.02d | -22.59±2.28d |
50 | 481.62±2.82e | 0.52±0.03e | -19.49±2.35e |
70 | 絮凝 | 1.00 | -1.62±2.43f |
90 | 絮凝 | 1.00 | -0.94±2.44f |
[1] |
Zheng Huaming, Mei Jun, Liu Fangjun, et al. Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging[J]. Food Packaging and Shelf Life, 2022, 34: 100972.
doi: 10.1016/j.fpsl.2022.100972 |
[2] |
Sun Jishuai, Cheng Yishen, Zhang Tuo, et al. Microencapsulation of carvacrol by complex coacervation of walnut meal protein isolate and gum arabic: preparation, characterization and bio-functional activity[J]. Foods, 2022, 11 (21) : 3382.
doi: 10.3390/foods11213382 |
[3] |
Xu Wei, Zheng Shuqing, Sun Haomin, et al. Rheological behavior and microstructure of Pickering emulsions based on different concentrations of gliadin/sodium caseinate nanoparticles[J]. European Food Research and Technology, 2021, 247 (10) : 2621-2633.
doi: 10.1007/s00217-021-03827-6 |
[4] | MirandaCadena Katherine, Dias Marisol, Costa-Barbosa Augusto, et al. Development and characterization of monoolein-based liposomes of carvacrol, cinnamaldehyde, citral, or thymol with anti-candida activities[J]. Antimicrobial Agents and Chemotherapy, 2021, 65 (4) : 1120-1128. |
[5] | Wang Yonghui, Lu Zhen, Guo Weiyun, et al. Research progress of protein-based curcumin nanoparticle delivery system[J]. Food Research and Development, 2021, 42 (15) : 198-203. |
[6] | Xu Xueer, Wang Tianyuan, Chen Zhenxing. Fabrication of gliadin-arabic gum nanoparticles and preliminary study on loading of thymol[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35 (5) : 79-84, 92. |
[7] |
Zou Liqiang, Xie Anqi, Zhu Yuqing, et al. Cereal proteins in nanotechnology: Formulation of encapsulation and delivery systems[J]. Current Opinion in Food Science, 2019, 25: 28-34
doi: 10.1016/j.cofs.2019.02.004 |
[8] |
Veneranda Marco, Hu Qiaobin, Wang Taoran, et al. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol[J]. LWT-Food Sci Technol, 2018, 89: 596-603.
doi: 10.1016/j.lwt.2017.11.040 |
[9] |
Lin Jiawei, Meng Hecheng, Yu Shujuan, et al. Genipin-crosslinked sugar beet pectin-bovine serum albumin nanoparticles as novel Pickering stabilizer[J]. Food Hydrocolloids, 2021, 112: 106306.
doi: 10.1016/j.foodhyd.2020.106306 |
[10] | Liang Xiao, Hu Yong, Xu Jinrui, et al. Stabilization of tannic acid-loaded zein nanoparticles by anionic polysaccharides with different charges[J]. Modern Food Science and Technology, 2022, 38 (5) : 174-182. |
[11] | Zheng Huaming, Wang Jiangli, Tian Yuhang, et al. Properties of carvacrol-loaded nanoparticles prepared by pH-driven method[J]. Polymer Materials Science and Engineering, 2022, 38 (8) : 177-184. |
[12] | Ma Yuting. Study on antioxidant properties pf polyphenolic compounds of millet bran and their appication in Pickering emulsion[D]. Ningxia: Ningxia University, 2022. |
[13] |
Huang Xin, Li Tuoping, Li Suhong. Encapsulation of vitexin-rhamnoside based on zein/pectin nanoparticles improved its stability and bioavailability[J]. Current Research in Food Science, 2023, 6: 100419.
doi: 10.1016/j.crfs.2022.100419 |
[14] |
Gali Lynda, Bedjou Fatiha, Ferrari Giovanna, et al. Formulation and characterization of zein/gum arabic nanoparticles for the encapsulation of a rutin-rich extract from Ruta chalepensis L.[J]. Food Chemistry, 2022, 367: 129982.
doi: 10.1016/j.foodchem.2021.129982 |
[15] | Guo Siyan, Zhao Yanyan, Luo Shuizhong, et al. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility[J]. The Journal of the Science of Food and Agriculture, 2020, 12 (11) : 2576. |
[16] |
Chang Chao, Wang Taoran, Hu Qiaobin, et al. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin[J]. Food Hydrocolloids, 2017, 70: 143-151.
doi: 10.1016/j.foodhyd.2017.03.033 |
[17] |
Yao Xiaolin, Xu Kai, Shu Meng, et al. Fabrication of iron loaded whey protein isolate/gum arabic nanoparticles and its adsorption activity on oil-water interface[J]. Food Hydrocolloids, 2021, 115: 106610.
doi: 10.1016/j.foodhyd.2021.106610 |
[18] |
Priyanka Kaushik, Eepsita Priyadarshini, Kamla Rawat, et al. pH responsive doxorubucin loaded zein nanoparticle crosslinked pectin hydrogel as effective site-specific anticancer substrates[J]. International Journal of Biological Macromolecules, 2019, 152: 1027-1037.
doi: 10.1016/j.ijbiomac.2019.10.190 |
[19] |
Wu Weihao, Kong Xiangzhen, Zhang Caimeng, et al. Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride[J]. LWT, 2020, 129: 109532.
doi: 10.1016/j.lwt.2020.109532 |
[20] |
Guo Siyan, Zhao Yanyan, Luo Shuizhong, et al. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility[J]. Journal of the Science of Food and Agriculture, 2022, 102 (12) : 5121-5131.
doi: 10.1002/jsfa.11862 pmid: 35275410 |
[21] |
Banaee Fatemeh, Poureini Fatemeh, Mohammadi Maedeh, et al. Encapsulation of curcumin in gliadin-pectin in a core-shell nanostructure for efficient delivery of curcumin to cancer cells in vitro[J]. Colloid and Polymer Science, 2022, 300 (9) : 1063-1073.
doi: 10.1007/s00396-022-04998-8 |
[22] | Ma Juanjuan. Fabrication of zein-based delivery systems for quercetin on investigating its bioactivities and bioavailability[D]. Guangdong: South China University of Techology, 2021. |
[23] |
Zhao Tian, Arunachalam Chinnathambi, Tahani Awad Alahmadi, et al. Anti-arthritic activity of Tin oxide-chitosan-polyethylene glycol carvacrol nanoparticles against freund’s adjuvant induced arthritic rat model via the inhibition of cyclooxygenase-2 and prostaglandin E2[J]. Arabian Journal of Chemistry, 2022, 15 (2) : 103563.
doi: 10.1016/j.arabjc.2021.103563 |
[24] |
Ye Wenbo, Zhang Guangliang, Liu Xiaomin, et al. Fabrication of polysaccharide-stabilized zein nanoparticles by flash nanoprecipitation for doxorubicin sustained release[J]. Journal of Drug Delivery Science and Technology, 2022, 70: 103183.
doi: 10.1016/j.jddst.2022.103183 |
[25] |
Li Yongshi, Shan Peng, Yu Fuyou, et al. Fabrication and characterization of waste fish scale-derived gelatin/sodium alginate/carvacrol loaded ZIF-8 nanoparticles composite films with sustained antibacterial activity for active food packaging[J]. International Journal of Biological Macromolecules, 2023, 230: 123192.
doi: 10.1016/j.ijbiomac.2023.123192 |
[1] | Pei Liu, Ting Pan, Xiaomei Pei, Binglei Song, Jianzhong Jiang, Zhenggang Cui, Bernard P. Binks. Dual-responsive oil-in-water emulsions co-stabilized by a nonionic-anionic Bola surfactant and silica nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2024, 54(1): 1-15. |
[2] | Wang Zhuliang,Guan Shuping,Zhang Min,Yang Jie,Li Yongji. The size and morphology control of Fe3O4 nanoparticles synthesized by solvothermal method using polyethylene glycol and diethylene glycol [J]. China Surfactant Detergent & Cosmetics, 2023, 53(8): 882-890. |
[3] | Wang Min, Li Mengyue, Li Xiaoyi, Liu Qi, Zhao Hua, Zhao Fengnian. On-site and rapid electrochemical method for chloramphenicol detection in facial masks [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 802-807. |
[4] | Li Xi, Aidarova Saule, Yin Xia, Issakhov Miras, Xu Derong, Kang Wanli. Research progress of fluorescent nanomaterials [J]. China Surfactant Detergent & Cosmetics, 2023, 53(5): 551-559. |
[5] | Wang Chunyu, Wang Huijuan, Fan Shiqiang, Liu Yang. Research progress on functional application of lignin nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2023, 53(1): 92-99. |
[6] | Xie Xin,Wang Weihao,Liu Huanyu,Sun Mengmeng,Li Qinyuan,Jia Lufan,Meng Tao. Study on the Pickering emulsion stabilized by Alg@TiO2 microspheres for sunscreen formulation [J]. China Surfactant Detergent & Cosmetics, 2022, 52(3): 229-236. |
[7] | Zhang Yaru,Liu Dong,Zhang Yun,Chen Hao,Cao Yuhua. Preparation of SiO2-encapsulated TiO2 composite nanoparticles and evaluation of the sunscreen performance [J]. China Surfactant Detergent & Cosmetics, 2022, 52(1): 28-34. |
[8] | Shen Yongqiang,Sun Yajuan,Yang Cheng,Wang Jing. Study on the preparation and emulsifying properties of peach seed protein isolate nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2021, 51(9): 809-816. |
[9] | Hu Jiawen,Fan Ye,Fang Yun,Wang Hong. Aqueous two-phase Pickering emulsions stabilized by the CLAA@CaCO3 nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2021, 51(12): 1186-1191. |
[10] | ZHANG Yang,YAN Yong-li,XI Qi,YU Chang-long,KOU Wei-wei. Effects of SiO2 nanoparticles on the stability of aqueous foams [J]. China Surfactant Detergent & Cosmetics, 2020, 50(1): 26-31. |
[11] | XUE Wei,WU Jiang-hong,DU Zhi-ping. Preparation of Janus micro/nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2019, 49(9): 614-620. |
[12] | LI Fei,PENG Zhi,WANG Wei-hao,SUN He-jia,GUO Ting,MENG Tao. Pickering emulsion stabilized by modified SOD nanoparticles and its antioxidation property [J]. China Surfactant Detergent & Cosmetics, 2019, 49(12): 801-804. |
[13] | ZHANG Wan-qing,XU Mao-dong,JIANG Jian-zhong,CUI Zheng-gang. Interactions between surfactants and nanoparticles and the construction of smart systems(V) Interactions between like-charged nanoparticles and ionic surfactants(i) Construction of novel emulsions using ultra-low concentration of nanoparticles/surfactants and their stabilization mechanism [J]. China Surfactant Detergent & Cosmetics, 2019, 49(11): 711-720. |
[14] | ZHANG Wan-qing,JIANG Jian-zhong,CUI Zheng-gang. Interactions between surfactants and nanoparticles and theconstruction of smart systems(IV)Interactions between nanoparticles and nonionic surfactantsConstruction of temperature-responsive Pickering emulsionsvia hydrogen bonding [J]. China Surfactant Detergent & Cosmetics, 2019, 49(10): 633-642. |
[15] | FENG Mei-xi, YAN Hui-qiong, CHEN Xiu-qiong, LIN Liang-quan, YANG Zheng, LIN Qiang. Effects of benzyl-grafted alginate derivative on the dispersion stability of TiO2 nanoparticles [J]. China Surfactant Detergent & Cosmetics, 2018, 48(6): 341-347. |
|