China Surfactant Detergent & Cosmetics ›› 2024, Vol. 54 ›› Issue (4): 385-392.doi: 10.3969/j.issn.2097-2806.2024.04.003
• Lecture of science and technology • Previous Articles Next Articles
Shiyu Deng1,2,Xu Sun1,2,Jianming Jin1,2,*(),Hua Wu1,2
Received:
2024-04-07
Revised:
2024-04-08
Online:
2024-04-22
Published:
2024-04-26
Contact:
*Tel.: +86-10-68984937, E-mail: CLC Number:
Shiyu Deng, Xu Sun, Jianming Jin, Hua Wu. Botanical cosmetic ingredients (VIII)Research and development of plant antibacterial[J].China Surfactant Detergent & Cosmetics, 2024, 54(4): 385-392.
[1] | Zulkowski K. Skin bacteria: Implications for wound care[J]. Advances in Skin & Wound Care, 2013, 26 (5) : 231-236. |
[2] |
Grice E A, Segre J A. The skin microbiome[J]. Nature Reviews Microbiology, 2011, 9 (4) : 244-253.
doi: 10.1038/nrmicro2537 pmid: 21407241 |
[3] |
Zukiewicz-Sobczak W A, Adamczuk P, Wroblewska P, et al. Allergy to selected cosmetic ingredients[J]. Postepy Dermatologii I Alergologii, 2013, 30 (5) : 307-310.
doi: 10.5114/pdia.2013.38360 pmid: 24353491 |
[4] |
Khameneh B, Iranshahy M, Soheili V, et al. Review on plant antimicrobials: A mechanistic viewpoint[J]. Antimicrobial Resistance and Infection Control, 2019, 8: 118.
doi: 10.1186/s13756-019-0559-6 pmid: 31346459 |
[5] |
Singh S B, Barrett J F. Empirical antibacterial drug discovery-foundation in natural products[J]. Biochemical Pharmacology, 2006, 71 (7) : 1006-1015.
pmid: 16412984 |
[6] |
Porras G, Chassagne F, Lyles J T, et al. Ethnobotany and the role of plant natural products in antibiotic drug discovery[J]. Chemical Reviews, 2021, 121 (6) : 3495-3560.
doi: 10.1021/acs.chemrev.0c00922 pmid: 33164487 |
[7] |
Li H M, Shen S, Yu K J, et al. Construction of porous structure-based carboxymethyl chitosan/sodium alginate/tea polyphenols for wound dressing[J]. International Journal of Biological Macromolecules, 2023, 233: 123404.
doi: 10.1016/j.ijbiomac.2023.123404 |
[8] |
Zeng Z W, Guo C P, Lu D H, et al. Polyphenol-metal functionalized hydrogel dressing with sustained release, antibacterial, and antioxidant properties for the potential treatment of chronic wounds[J]. Macromolecular Materials and Engineering, 2022, 307 (10) : 2200262.
doi: 10.1002/mame.v307.10 |
[9] |
Wei Q C, Zhao Y F, Wei Y X, et al. Facile preparation of polyphenol-crosslinked chitosan-based hydrogels for cutaneous wound repair[J]. International Journal of Biological Macromolecules, 2023, 228: 99-110.
doi: 10.1016/j.ijbiomac.2022.12.215 pmid: 36565830 |
[10] |
Wutticharoenmongkol P, Hannirojram P, Nuthong P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials[J]. Polymers for Advanced Technologies, 2019, 30 (4) : 1135-1147.
doi: 10.1002/pat.4547 |
[11] |
Vivcharenko V, Trzaskowska M, Przekora A. Wound dressing modifications for accelerated healing of infected wounds[J]. International Journal of Molecular Sciences, 2023, 24 (8) : 7193.
doi: 10.3390/ijms24087193 |
[12] |
Dehsheikh A B, Sourestani M M, Dehsheikh P B, et al. Monoterpenes: Essential oil components with valuable features[J]. Mini-Reviews in Medicinal Chemistry, 2020, 20 (11) : 958-974.
doi: 10.2174/1389557520666200122144703 |
[13] | Yang W Q, Chen X, Li Y L, et al. Advances in pharmacological activities of terpenoids[J]. Natural Product Communications, 2020, 15 (3) : 1934578X20903555. |
[14] |
Giweli A, Dzamic A M, Sokovic M, et al. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya[J]. Molecules, 2012, 17 (5) : 4836-4850.
doi: 10.3390/molecules17054836 |
[15] |
Marchese A, Orhan I E, Daglia M, et al. Antibacterial and antifungal activities of thymol: A brief review of the literature[J]. Food Chem, 2016, 210: 402-414.
doi: 10.1016/j.foodchem.2016.04.111 pmid: 27211664 |
[16] | Stojanovic-Radic Z, Comic L, Radulovic N, et al. Antistaphylococcal activity of Inula helenium L. root essential oil: Eudesmane sesquiterpene lactones induce cell membrane damage[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31 (6) : 1015-1025. |
[17] |
Seca A M L, Grigore A, Pinto D, et al. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses[J]. Journal of Ethnopharmacology, 2014, 154 (2) : 286-310.
doi: 10.1016/j.jep.2014.04.010 pmid: 24754913 |
[18] | Li Z, Ding X, Wang Y, et al. Chemical components and pharmacological activities of Smallanthus sonchifolius (yacon): A review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28 (11) : 217-226. |
[19] | Kubo I. Antimicrobial activity of green tea flavor components-effectiveness against Streptococcus mutans[J]. Acs Symposium Series, 1993, 525: 57-70. |
[20] |
Sokovic M, Ciric A, Glamoclija J, et al. Biological activities of sesquiterpene lactones isolated from the genus Centaurea L. (Asteraceae)[J]. Current Pharmaceutical Design, 2017, 23 (19) : 2767-2786.
doi: 10.2174/1381612823666170215113927 pmid: 28215152 |
[21] |
Da Silva S D C, De Souza M G M, Cardoso M J O, et al. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections[J]. Anaerobe, 2014, 30: 146-152.
doi: 10.1016/j.anaerobe.2014.09.013 |
[22] |
Da Silva K R, Damasceno J L, Inacio M D, et al. Antibacterial and cytotoxic activities of Pinus tropicalis and Pinus elliottii resins and of the diterpene dehydroabietic acid against bacteria that cause dental caries[J]. Frontiers Microbiology, 2019, 10: 987.
doi: 10.3389/fmicb.2019.00987 |
[23] |
Ojeda-Sana A, Repetto V, Moreno S. Carnosic acid is an efflux pumps modulator by dissipation of the membrane potential in enterococcus faecalis and Staphylococcus aureus[J]. World Journal of Microbiology and Biotechnology, 2013, 29 (1) : 137-144.
doi: 10.1007/s11274-012-1166-3 |
[24] |
Moreira M R, Souza A B, Soares S, et al. Ent-kaurenoic acid-rich extract from Mikania glomerata: In vitro activity against bacteria responsible for dental caries[J]. Fitoterapia, 2016, 112: 211-216.
doi: 10.1016/j.fitote.2016.06.007 |
[25] |
Moreti D L C, Leandro L F, Moraes T D, et al. Mikania glomerata Sprengel extract and its major compound ent-kaurenoic acid display activity against bacteria present in endodontic infections[J]. Anaerobe, 2017, 47: 201-208.
doi: 10.1016/j.anaerobe.2017.06.008 |
[26] |
López-Hortas L, Pérez-Larrán P, González-Muñoz M J, et al. Recent developments on the extraction and application of ursolic acid. A review[J]. Food Research International, 2018, 103: 130-149.
doi: S0963-9969(17)30715-9 pmid: 29389599 |
[27] |
Do Nascimento P G G, Lemos T L G, Bizerra A M C, et al. Antibacterial and antioxidant activities of ursolic acid and derivatives[J]. Molecules, 2014, 19 (1) : 1317-1327.
doi: 10.3390/molecules19011317 pmid: 24451251 |
[28] | Hu Y, He S, Wang Y. Progress in researches of the antibacterial effect of oleanolic acid[J]. Chinese Journal New Drugs, 2017, 26 (3) : 304-308. |
[29] |
Gilabert M, Marcinkevicius K, Andujar S, et al. Sesqui-and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria[J]. Phytomedicine, 2015, 22 (1) : 77-85.
doi: 10.1016/j.phymed.2014.10.006 pmid: 25636875 |
[30] | Wolska K I, Grudniak A M, Fiecek B, et al. Antibacterial activity of oleanolic and ursolic acids and their derivatives[J]. Central European Journal of Biology, 2010, 5 (5) : 543-553. |
[31] |
Chen J J, Fei D Q, Chen S G, et al. Antimicrobial triterpenoids from Vladimiria muliensis[J]. Journal of Natural Products, 2008, 71 (4) : 547-550.
doi: 10.1021/np070483l |
[32] |
Braca A, Morelli I, Mendez J, et al. Antimicrobial triterpenoids from Licania heteromorpha[J]. Planta Medica, 2000, 66 (8) : 768-769.
pmid: 11199141 |
[33] |
Barbieri R, Coppo E, Marchese A, et al. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity[J]. Microbiological Research, 2017, 196: 44-68.
doi: S0944-5013(16)30619-X pmid: 28164790 |
[34] | Yan Y M, Li X, Zhang C H, et al. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review[J]. Antibiotics-Basel, 2021, 10 (3) : 318. |
[35] |
Zielinska S, Wojciak-Kosior M, Dziagwa-Becker M, et al. The activity of isoquinoline alkaloids and extracts from Chelidonium majus against pathogenic bacteria and Candida sp.[J]. Toxins, 2019, 11 (7) : 406.
doi: 10.3390/toxins11070406 |
[36] | Wu H, Song J, Fan K, et al. Indole alkaloids from roots of Rauvolfia yunnanensis and its antibacterial activities[J]. Chinese Traditional and Herbal Drugs, 2023, 54 (4) : 1033-1042. |
[37] |
Ding C F, Ma H X, Yang J, et al. Antibacterial indole alkaloids with complex heterocycles from Voacanga africana[J]. Organic Letters, 2018, 20 (9) : 2702-2706.
doi: 10.1021/acs.orglett.8b00913 |
[38] | Liu Y, Cui Y, Lu L Y, et al. Natural indole-containing alkaloids and their antibacterial activities[J]. Archiv Der Pharmazie, 2020, 353 (10) : e2000120. |
[39] |
Farhadi F, Khameneh B, Iranshahi M, et al. Antibacterial activity of flavonoids and their structure-activity relationship: An update review[J]. Phytotherapy Research, 2019, 33 (1) : 13-40.
doi: 10.1002/ptr.6208 pmid: 30346068 |
[40] |
Aderogba M A, Ndhlala A R, Rengasamy K R R, et al. Antimicrobial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii[J]. Molecules, 2013, 18 (10) : 12633-12644.
doi: 10.3390/molecules181012633 pmid: 24126380 |
[41] |
Cushnie T P T, Lamb A J. Recent advances in understanding the antibacterial properties of flavonoids[J]. International Journal of Antimicrobial Agents, 2011, 38 (2) : 99-107.
doi: 10.1016/j.ijantimicag.2011.02.014 pmid: 21514796 |
[42] |
Echeverria J, Opazo J, Mendoza L, et al. Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora[J]. Molecules, 2017, 22 (4) : 608.
doi: 10.3390/molecules22040608 |
[43] |
Zuo G Y, Wang C J, Han J, et al. Synergism of coumarins from the chinese drug Zanthoxylum nitidum with antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA)[J]. Phytomedicine, 2016, 23 (14) : 1814-1820.
doi: 10.1016/j.phymed.2016.11.001 |
[44] |
Xu W H, Zhao P, Wang M, et al. Naturally occurring furofuran lignans: Structural diversity and biological activities[J]. Natural Product Research, 2019, 33 (9) : 1357-1373.
doi: 10.1080/14786419.2018.1474467 |
[45] |
Kouidhi B, Zmantar T, Jrah H, et al. Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens[J]. Annals of Clinical Microbiology and Antimicrobials, 2011, 10: 29.
doi: 10.1186/1476-0711-10-29 pmid: 21707998 |
[46] |
Cowan M M. Plant products as antimicrobial agents[J]. Clinical Microbiology Reviews, 1999, 12 (4) : 564.
doi: 10.1128/CMR.12.4.564 pmid: 10515903 |
[47] | Xiang Y, Wang H, Sun Y. Review on application of Litsea cubeba essential oils[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35 (8) : 186-195. |
[48] |
Lee C J, Chen L W, Chen L G, et al. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation[J]. Journal of Food and Drug Analysis, 2013, 21 (2) : 169-176.
doi: 10.1016/j.jfda.2013.05.007 |
[49] |
Kaźmierska A, Bolesławska I, Przysławski J. The effect of diet and phytotherapy in the treatment of Acne vulgaris[J]. Farmacja Polska, 2020, 76 (7) : 373-380.
doi: 10.32383/farmpol/126231 |
[50] |
Cavanagh H M A, Wilkinson J N. Biological activities of lavender essential oil[J]. Phytotherapy Research, 2002, 16 (4) : 301-308.
doi: 10.1002/ptr.1103 pmid: 12112282 |
[51] | Nurzynska-Wierdak R, Pietrasik D, Walasek-Janusz M. Essential oils in the treatment of various types of acne-a review[J]. Plants-Basel, 2023, 12 (1) : 90. |
[52] |
Altaf F, Niazi M B K, Jahan Z, et al. Synthesis and characterization of pva/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications[J]. Journal of Polymers and the Environment, 2021, 29 (1) : 156-174.
doi: 10.1007/s10924-020-01866-w |
[53] | Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives[J]. Medicines (Basel, Switzerland), 2017, 4 (3) : 4030058. |
[54] |
Perianayagam J B, Sharma S K, Pillai K K, et al. Evaluation of antimicrobial activity of ethanol extract and compounds isolated from Trichodesma indicum (Linn.) R. Br. root[J]. Journal of Ethnopharmacology, 2012, 142 (1) : 283-286.
doi: 10.1016/j.jep.2012.04.020 pmid: 22543169 |
[55] |
Vaughn A R, Clark A K, Sivamani R K, et al. Natural oils for skin-barrier repair: Ancient compounds now backed by modern science[J]. American Journal of Clinical Dermatology, 2018, 19 (1) : 103-117.
doi: 10.1007/s40257-017-0301-1 pmid: 28707186 |
[56] | Sorlozano-Puerto A, Albertuz-Crespo M, Lopez-Machado I, et al. In vitro antibacterial activity of propyl-propane-thiosulfinate and propyl-propane-thiosulfonate derived from Allium spp. Against gram-negative and gram-positive multidrug-resistant bacteria isolated from human samples[J]. Biomed Research International, 2018, 2018: 7861207. |
[57] |
Yu L, Ren J X, Nan H M, et al. Identification of antibacterial and antioxidant constituents of the essential oils of Cynanchum chinense and Ligustrum compactum[J]. Natural Product Research, 2015, 29 (18) : 1779-1782.
doi: 10.1080/14786419.2014.1000322 |
[1] | Yang Song,Yongbo Lv,Hankun Ren,Jiaolong Peng. Study on the mechanism and efficacy of controlling oil and shrinking pores in fermentation broth of Fomes officinalis [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 566-573. |
[2] | Qiong Chen,Zheng Zhang,Zhe Su,Gangli Wang,Jiasheng Tu,Chunmeng Sun. Correlation of cosmetic nanomaterials attributes and their efficacy [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 588-595. |
[3] | Guangfeng Zeng,Zhiyuan Wang,Jianjun Xie,Lu Wang,Yingye Hou,Jie Dong. Rapid determination of free ethanolamine compounds in cosmetics by liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(5): 614-620. |
[4] | Zhongjie Hua, Wenxuan Mao, Feiqian Di, Jiachan Zhang, Changtao Wang. A review on application and development of fermentation cosmetics based on database visualization [J]. China Surfactant Detergent & Cosmetics, 2024, 54(4): 439-448. |
[5] | Jingxuan Liu, Jianming Jin, Hua Wu. Botanical cosmetic ingredients (VII)Research and development of plant antifungal [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 259-266. |
[6] | Wu Bi, Xiaohong Pan, Xiaoqin Tu, Shuai Yin, Hui Sun. Analysis of the mechanism of anti-sensitive skin effect of cosmetic raw material Stephania tetrandra based on network pharmacology [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 305-312. |
[7] | Yaoyao Li. Study on the anti-aging and antioxidant effects of isosinensetin [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 313-319. |
[8] | Liyuan Zhang, Linqi Yan, Qiaoyuan Cheng, Lvye Qi, Rong Wang, Liuqian Huang. Determination of 14 kinds of α-hydroxy acids and hydroxy esters in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 353-359. |
[9] | Wei Xu, Po Zou, Changyu Li, Ming Yang, Yan Lu, Huiliang Li. Determination of 36 stimulants in cosmetics by ultra performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(3): 360-368. |
[10] | Kangfu Zhou, Yixuan Zhi, Feifei Wang, Yazhuo Shang. New emulsion system and its application in cosmetics (VI)Microemulsion [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 139-148. |
[11] | Zhen Xie, Wei Huang, Jinsong Zhang, Shuhuai Chen, Linji Qu, Rong Kuang. Study on biomarkers of corneal injury in the evaluation of eye irritation of cosmetics [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 161-167. |
[12] | Xiaohong Pan, Ziqi Gao, Zhen Chen, Shuai Yin, Haiping Huang, Bin Hu. Discussion on the current situation of research and management on the stability of cosmetic products in China [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 201-208. |
[13] | Li Lu, Fang Fang, Youlong Feng, Ling Cao. Screening for illegal addition of sulfonamides in cosmetic products using ultra-performance liquid chromatographytriple quadrupoletandem mass spectrometry with precursor ion scanning [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 216-223. |
[14] | Ren Wang, Yuanyang Wu, Jia Qiao, Linqi Yan, Cen Chen, Liyuan Zhang. Study on phenoxyethanol content in children’s cosmetics on the mark and preliminary risk assessment [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 224-230. |
[15] | Yixiang Lu, Liting Wu, Jimin Jiang, Hailu Chen, Xuan Huang. Determination of tolnaftate and liranaftate in cosmetics by high performance liquid chromatography and verification by high performance liquid chromatography-tandem mass spectrometry [J]. China Surfactant Detergent & Cosmetics, 2024, 54(2): 231-238. |
|