China Surfactant Detergent & Cosmetics ›› 2023, Vol. 53 ›› Issue (12): 1451-1458.doi: 10.3969/j.issn.2097-2806.2023.12.013
• Reviews • Previous Articles Next Articles
Chencan Cao,Qidan Tan,Lei Liu*(),Xiaoyu Yang,Haifeng Chen
Received:
2022-11-10
Revised:
2023-11-27
Online:
2023-12-22
Published:
2024-01-12
Contact:
* Tel.: +86-18611801510, E-mail: CLC Number:
Chencan Cao, Qidan Tan, Lei Liu, Xiaoyu Yang, Haifeng Chen. Cell model research status and application prospects for the evaluation of anti-glycation efficacy[J].China Surfactant Detergent & Cosmetics, 2023, 53(12): 1451-1458.
[1] |
Cordain L, Eaton S B, Sebastian A, et al. Origins and evolution of the Western diet: health implications for the 21st century[J]. American Journal of Clinical Nutrition, 2005, 81 (2) : 341-54.
doi: 10.1093/ajcn.81.2.341 pmid: 15699220 |
[2] |
Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease[J]. Nutrients, 2017, 9 (4) : 385.
doi: 10.3390/nu9040385 |
[3] | Bronsnick T, Murzaku E C, Rao B K. Diet in dermatology Part Ⅰ: atopic dermatitis, acne, and nonmelanoma skin cancer[J]. Journal of the American Academy of Dermatology, 2014, 71 (6) : 1039. |
[4] | Liu Y L, Deng J. Current situation and future of cosmetics industry in China[J]. Detergent & Cosmetics, 2016, 39 (1) : 1-8. |
[5] | Zhang Q, Cao L H, Zhao H, et al. Evaluation of cosmetic safety and efficacy claims under the new regulations[J]. Detergent & Cosmetics, 2021, 44 (7) : 1-4. |
[6] | Yin Y X, Zhao H. Evaluation of cosmetic efficacy (Ⅰ): Scientific support for cosmetic efficacy claims[J]. China Surfactant Detergent & Cosmetics, 2018, 48 (1) : 8-13. |
[7] | Guo L Q, Wang M. Cosmetic efficacy evaluation (Ⅶ): Application of cell biology in cosmetic efficacy evaluation[J]. China Surfactant Detergent & Cosmetics, 2018, 48 (7) : 371-377. |
[8] |
Gonzalez I, Morales M A, Rojas A. Polyphenols and AGEs/RAGE axis: trends and challenges[J]. Food Research International, 2020, 129: 108843.
doi: 10.1016/j.foodres.2019.108843 |
[9] | Byun K, Yoo Y, Son M, et al. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases[J]. Pharmacology & Therapeutics, 2017, 177: 44-55. |
[10] |
Henning C, Glomb M A. Pathways of the Maillard reaction under physiological conditions[J]. Glycoconjugate Journal, 2016, 33 (4) : 499-512.
doi: 10.1007/s10719-016-9694-y pmid: 27291759 |
[11] |
Peng X, Ma J, Chen F, et al. Naturally occurring inhibitors against the formation of advanced glycation end-products[J]. Food Function, 2011, 2 (6) : 289-301.
doi: 10.1039/c1fo10034c |
[12] | Tessier F J. The Maillard reaction in the human body: the main discoveries and factors that affect glycation[J]. Pathologie Biologle, 2010, 58 (3) : 214-219. |
[13] |
Hemmler D, Roullier-Gall C, Marshall J W, et al. Evolution of complex maillard chemical reactions, resolved in time[J]. Scientific Reports, 2017, 7 (1) : 3227.
doi: 10.1038/s41598-017-03691-z |
[14] |
Khan M, Liu H, Wang J, et al. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: a comprehensive review[J]. Food Research International, 2020, 130: 108933.
doi: 10.1016/j.foodres.2019.108933 |
[15] |
Lund M N, Ray C A. Control of Maillard reactions in foods: strategies and chemical mechanisms[J]. Journal of Agricultural and Food Chemistry, 2017, 65 (23) : 4537-4552.
doi: 10.1021/acs.jafc.7b00882 pmid: 28535048 |
[16] |
Yeh W J, Hsia S M, Lee W H, et al. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings[J]. Journal of Food and Drug Analysis, 2017, 25 (1) : 84-92.
doi: 10.1016/j.jfda.2016.10.017 |
[17] |
Chen J H, Lin X, Bu C, et al. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies[J]. Nutrition Metabolism, 2018, 15: 72.
doi: 10.1186/s12986-018-0306-7 |
[18] |
Gkogkolou P, Bohm M. Advanced glycation end products: key players in skin aging?[J] Dermato- endocrinology, 2012, 4 (3) : 259-270.
doi: 10.4161/derm.22028 |
[19] |
Kuzan A. Toxicity of advanced glycation end products (Review)[J]. Biomedical Report, 2021, 14 (5) : 46.
doi: 10.3892/br |
[20] |
Fournet M, Bonte F, Desmouliere A. Glycation damage: a possible hub for major pathophysiological disorders and aging[J]. Aging and Disease, 2018, 9 (5) : 880-900.
doi: 10.14336/AD.2017.1121 |
[21] |
Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling[J]. Redox Biology, 2014, 2: 411-429.
doi: 10.1016/j.redox.2013.12.016 pmid: 24624331 |
[22] |
Lohwasser C, Neureiter D, Weigle B, et al. The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha[J]. Journal of Investigative Dermatology, 2006, 126 (2) : 291-299.
doi: 10.1038/sj.jid.5700070 pmid: 16374460 |
[23] | Alikhani M, Maclellan C M, Raptis M, et al. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor[J]. American Journal of Physiology Cell Physiology, 2007, 292 (2) : 850-856. |
[24] | Lee E J, Kim J Y, Oh S H. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs[J]. Scientific Report, 2016, 6: 27848. |
[25] |
Zhu P, Ren M, Yang C, et al. Involvement of RAGE, MAPK and NF-kappaB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes[J]. Experimental Dermatology, 2012, 21 (2) : 123-129.
doi: 10.1111/exd.2011.21.issue-2 |
[26] | Kong X, Zhao H, Tang Y. Research progress of application of skin model in cosmetic efficacy evaluation[J]. China Surfactant Detergent & Cosmetics, 2017, 47 (4) : 228-231, 236. |
[27] | Ma Y C, Liu L, He C F. Types, characteristics and application of the skin cells used in cosmetic efficacy evaluation[J]. China Surfactant Detergent & Cosmetics, 2021, 51 (1) : 50-55. |
[28] |
May J M, Jayagopal A, Qu Z C, et al. Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes[J]. Biochemical and Biophysical Research Communications, 2014, 452 (1) : 112-117.
doi: 10.1016/j.bbrc.2014.08.057 pmid: 25152398 |
[29] |
Soydas T, Yaprak Sarac E, Cinar S, et al. The protective effects of metformin in an in vitro model of aging 3T3 fibroblast under the high glucose conditions[J]. Journal of Physiology and Biochemistry, 2018, 74 (2) : 273-281.
doi: 10.1007/s13105-018-0613-5 pmid: 29512021 |
[30] |
Wu C H, Wu C F, Huang H W, et al. Naturally occurring flavonoids attenuate high glucose-induced expression of proinflammatory cytokines in human monocytic THP-1 cells[J]. Molecular Nutrition and Food Research, 2009, 53 (8) : 984-995.
doi: 10.1002/mnfr.v53:8 |
[31] |
Lan C C, Wu C S, Huang S M, et al. High-glucose environment inhibits p38MAPK signaling and reduces human β-3 expression in keratinocytes[J]. Molecular Medicine, 2011, 17 (7-8) : 771-779.
doi: 10.2119/molmed.2010.00091 |
[32] |
Fuloria S, Subramaniyan V, Karupiah S, et al. A comprehensive review on source, types, effects, nanotechnology, detection, and therapeutic management of reactive carbonyl species associated with various chronic diseases[J]. Antioxidants, 2020, 9 (11) : 1075.
doi: 10.3390/antiox9111075 |
[33] |
Larsen S A, Kassem M, Rattan S I. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells[J]. Chemistry Central Journal, 2012, 6: 18.
doi: 10.1186/1752-153X-6-18 pmid: 22424056 |
[34] |
Maessen D E, Stehouwer C D, Schalkwijk C G. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases[J]. Clinical Science, 2015, 128 (12) : 839-861.
doi: 10.1042/CS20140683 |
[35] |
Peake B, Ghetia M, Gerber C, et al. Role of saturated and unsaturated fatty acids on dicarbonyl-albumin derived advanced glycation end products in vitro[J]. Amino Acids, 2022, 54 (5) : 721-732.
doi: 10.1007/s00726-021-03069-6 |
[36] |
Roberts M J, Wondrak G T, Laurean D C, et al. DNA damage by carbonyl stress in human skin cells[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 522 (1-2) : 45-56.
pmid: 12517411 |
[37] |
Lin H, Lin T Y, Lin J A, et al. Effect of Pholidota namiko polysaccharides inhibiting methylglyoxal-induced glycation damage in vitro[J]. Antioxidants, 2021, 10 (10) : 1589.
doi: 10.3390/antiox10101589 |
[38] |
Yang C T, Meng F H, Chen L, et al. Inhibition of methylglyoxal-Induced AGEs/RAGE expression contributes to dermal protection by N-Acetyl-L-Cysteine[J]. Cell Physiology and Biochemistry, 2017, 41 (2) : 742-54.
doi: 10.1159/000458734 |
[39] |
Sawabe A, Yamashita A, Fujimatsu M, et al. Development of evaluation methods for anti-glycation activity and functional ingredients contained in coriander and Fennel seeds[J]. Processes, 2022, 10 (5) : 982.
doi: 10.3390/pr10050982 |
[40] |
Sahi A K, Verma P, Varshney N, et al. Revisiting methodologies for in vitro preparations of advanced glycation end products[J]. Applied Biochemistry and Biotechnology, 2022, 194 (6) : 2831-2855.
doi: 10.1007/s12010-022-03860-5 pmid: 35257316 |
[41] |
Sukjamnong S, Chen H, Saad S, et al. Fimbristylis ovata and Artemisia vulgaris extracts inhibited AGE-mediated RAGE expression, ROS generation, and inflammation in THP-1 cells[J]. Toxicological Research, 2022, 38 (3) : 331-343.
doi: 10.1007/s43188-021-00114-0 pmid: 35874499 |
[42] |
Yu W, Hu X, Wang M. Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264.7 cells[J]. Journal of Functional Foods, 2018, 40: 272-279.
doi: 10.1016/j.jff.2017.11.003 |
[43] |
Han A R, Nam M H, Lee K W. Plantamajoside inhibits UVB and advanced glycation end products-induced MMP-1 expression by suppressing the MAPK and NF-κB pathways in HaCaT cells[J]. Photochemistry and Photobiology, 2016, 92 (5) : 708-719.
doi: 10.1111/php.2016.92.issue-5 |
[44] |
Yokota M, Tokudome Y. The effect of glycation on epidermal lipid content, its metabolism and change in barrier function[J]. Skin Pharmacology and Physiology, 2016, 29 (5) : 231-242.
doi: 10.1159/000448121 pmid: 27548800 |
[45] |
Advedissian T, Deshayes F, Poirier F, et al. The Parkinsonism-associated protein DJ-1/Park7 prevents glycation damage in human keratinocyte[J]. Biochemical and Biophysical Research Communications, 2016, 473 (1) : 87-91.
doi: S0006-291X(16)30368-0 pmid: 26995087 |
[46] |
Sakaguchi M, Murata H, Aoyama Y, et al. DNAX-activating protein 10 (DAP10) membrane adaptor associates with receptor for advanced glycation end products (RAGE) and modulates the RAGE-triggered signaling pathway in human keratinocytes[J]. Journal of Biological Chemistry, 2014, 289 (34) : 23389-23402.
doi: 10.1074/jbc.M114.573071 pmid: 25002577 |
[47] |
Lynch M D, Watt F M. Fibroblast heterogeneity: implications for human disease[J]. Journal of Clinical Investigation, 2018, 128 (1) : 26-35.
doi: 10.1172/JCI93555 pmid: 29293096 |
[48] |
Ouyang M, Fang J, Wang M, et al. Advanced glycation end products alter the m6A-modified RNA profiles in human dermal fibroblasts[J]. Epigenomics, 2022, 14 (8) : 431-449.
doi: 10.2217/epi-2022-0016 |
[49] |
Dai J, Chen H, Chai Y. Advanced glycation end products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive oxygen species (ROS) signaling pathway[J]. Medical Science Monitor, 2019, 25: 7499-7508.
doi: 10.12659/MSM.915806 pmid: 31587010 |
[50] |
Fang J, Ouyang M, Qu Y, et al. Advanced glycation end products promote melanogenesis by activating NLRP3 inflammasome in human dermal fibroblasts[J]. Journal of Investigative Dermatology, 2022, 142 (10) : 2591-2602.
doi: 10.1016/j.jid.2022.03.025 |
[51] |
Lee Y I, Lee S G, Jung I, et al. Effect of a topical collagen tripeptide on antiaging and inhibition of glycation of the skin: a pilot study[J]. International Journal of Molecular Sciences, 2022, 23 (3) : 1101.
doi: 10.3390/ijms23031101 |
[52] |
Bezold V, Rosenstock P, Scheffler J, et al. Glycation of macrophages induces expression of pro-inflammatory cytokines and reduces phagocytic efficiency[J]. Aging, 2019, 11 (14) : 5258-5275.
doi: 10.18632/aging.v11i14 |
[53] |
Teng J, Li Y, Yu W, et al. Naringenin, a common flavanone, inhibits the formation of AGEs in bread and attenuates AGEs-induced oxidative stress and inflammation in RAW264.7 cells[J]. Food Chemistry, 2018, 269: 35-42.
doi: S0308-8146(18)31099-9 pmid: 30100446 |
[54] |
Fernandes A C F, Vieira N C, Santana A L, et al. Peanut skin polyphenols inhibit toxicity induced by advanced glycation end-products in RAW264.7 macrophages[J]. Food and Chemical Toxicology, 2020, 145: 111619.
doi: S0278-6915(20)30509-3 pmid: 32791243 |
[55] |
Li H, DaSilva N A, Liu W, et al. Thymocid®, a standardized black cumin (Nigella sativa) seed extract, modulates collagen cross-linking, collagenase and elastase activities, and melanogenesis in murine B16F10 melanoma cells[J]. Nutrients, 2020, 12 (7) : 2146.
doi: 10.3390/nu12072146 |
[56] |
Sun M, Shen Z, Zhou Q, et al. Identification of the antiglycative components of Hong Dou Shan (Taxus chinensis) leaf tea[J]. Food Chemistry, 2019, 297: 124942.
doi: 10.1016/j.foodchem.2019.06.009 |
[57] |
Hu R, Wang M Q, Ni S H, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs[J]. European Journal of Pharmacology, 2020, 867: 172797.
doi: 10.1016/j.ejphar.2019.172797 |
[58] |
Zhou Q, Cheng K W, Gong J, et al. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells[J]. Biochem Pharmacol, 2019, 166: 231-241.
doi: S0006-2952(19)30215-1 pmid: 31158339 |
[1] | Tan Qidan, Bi Yongxian, Liu Lei, Hu Xueqing, Dai Xiaoyan. Research status of cosmetic soothing efficacy evaluation [J]. China Surfactant Detergent & Cosmetics, 2023, 53(2): 193-201. |
[2] | Yan Shaowei, Gao Chang, Zuo Lina. Preparation of high concentration ginsenoside Rg3 and its application in cosmetics [J]. China Surfactant Detergent & Cosmetics, 2023, 53(1): 24-31. |
[3] | LI Hui-ke,FENG Nan,WANG Wen-bo,LI Jun-xiang,HE Cong-fen. The mechanism of skin glycation reaction, influencing factors and the development status of anti-glycation in the cosmetics industry [J]. China Surfactant Detergent & Cosmetics, 2021, 51(2): 153-160. |
[4] | LI Xiao, ZHANG Xiao-e, LU Yong-bo, JIN Yan. Efficacy evaluation of cosmetics (Ⅷ) The application of 3D reconstructed skin models in the evaluation of cosmetic efficacy [J]. China Surfactant Detergent & Cosmetics, 2018, 48(9): 489-494. |
[5] | GUO Li-qun, WANG Min. Efficacy evaluation of cosmetics (Ⅶ) Application of cell biology in efficacy evaluation of cosmetics [J]. China Surfactant Detergent & Cosmetics, 2018, 48(7): 371-377. |
[6] | CHEN Wen-rui, CHEN Tian-hua, WANG Xiao-yi, XU Ji-ping, YU Jia-bin, WANG Ying-qiang. Research on image-based skin texture evaluation algorithm [J]. China Surfactant Detergent & Cosmetics, 2018, 48(12): 695-701. |
[7] | SHEN Xue-mei,WANG Rong-qing,WANG Xue-mei,ZHAO Wei,XIAO Wei-li. Study on beautifying effects of Phellinus linteus extract in vitro [J]. China Surfactant Detergent & Cosmetics, 2016, 46(9): 519-523. |
[8] | GUO Song-he,GAO He-yi,ZENG Sa,ZHANG Ge. Progress in research work with respect to in vitro evaluation method on cellular level for efficacy of anti-senility cosmetics [J]. China Surfactant Detergent & Cosmetics, 2016, 46(2): 114-117. |
|