China Surfactant Detergent & Cosmetics ›› 2022, Vol. 52 ›› Issue (2): 180-189.doi: 10.3969/j.issn.1001-1803.2022.02.011
Previous Articles Next Articles
Wang Penghui1,Wang Weixian1,2,Zeng Hui1,2,*(),Rui Zebao1,*(
)
Received:
2021-04-22
Revised:
2022-01-05
Online:
2022-02-25
Published:
2022-02-22
Contact:
Hui Zeng,Zebao Rui
E-mail:zenghui5@mail.sysu.edu.cn;ruizebao@mail.sysu.edu.cn
CLC Number:
Wang Penghui,Wang Weixian,Zeng Hui,Rui Zebao. Research progress in improving the washing performance of alkaline protease[J].China Surfactant Detergent & Cosmetics, 2022, 52(2): 180-189.
Tab. 1
Typical alkaline proteases used in liquid detergents[3]"
注册商标 | 生产商家 | 来源 | 野生型或基因编辑型 | 生产菌株 | 别称 |
---|---|---|---|---|---|
Alcalase® | Novozymes | B.licheniformis | WT | B.licheniformis | Subtilisin Carlsberg |
FNAa | Genencor | B.amyloliquefacuens | PE | B.subtilis | |
Savinase® | Novozymes | B.clausii | WT | B.clausii | Subtilisin 309 |
Purdfect™ | Genencor | B.lentus | WT | B.subtilis | |
KAPb | Kao | B.alkalophilus | WT | B.alkalophilus | |
Everlase™ | Novozymes | B.clausii | PE | B.clausii | |
Purafect OxP™ | Genencor | B.lentus | PE | B.subtilis | |
FN4a | Genencor | B.lentus | PE | B.subtilis | |
BLAP Sb | Henkel | B.lentus | PE | B.licheniformis | |
BLAP Xb | Henkel | B.lentus | PE | B.licheniformis | |
Esperase® | Novozymes | B.halodurans | WT | B.halodurans | Subtilisin 147 |
Kannase™ | Novozymes | B.clausii | PE | B.clausii | |
Properase™ | Genencor | B.alkalophilus PB92 | PE | B.alkalophilus |
[1] |
Gurumallesh P, Alagu K, Ramakrishnan B, et al. A systematic reconsideration on proteases[J]. International Journal of Biological Macromolecules, 2019, 128:254-267.
doi: S0141-8130(18)35199-7 pmid: 30664968 |
[2] |
Joshi N, Kocher G S, Kalia A, et al. Development of nano-silver alkaline protease bio-conjugate depilating eco-benign formulation by utilizing potato peel based medium[J]. International Journal of Biological Macromolecules, 2020, 152:261-271.
doi: 10.1016/j.ijbiomac.2020.02.251 |
[3] |
Maurer K H. Detergent proteases[J]. Curr Opin Biotechnol, 2004, 15(4):330-334.
doi: 10.1016/j.copbio.2004.06.005 |
[4] |
Kubelbeck S, Mikhael J, Keller H, et al. Enzyme-polymer conjugates to enhance enzyme shelf life in a liquid detergent formulation[J]. Macromolecular Bioscience, 2018, 18(7):1800095.
doi: 10.1002/mabi.v18.7 |
[5] |
Klibanov A M. Improving enzymes by using them in organic solvents[J]. Nature, 2001, 409(6817):241-246.
doi: 10.1038/35051719 |
[6] |
Otzen D. Protein-surfactant interactions: A tale of many states[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2011, 1814(5):562-591.
doi: 10.1016/j.bbapap.2011.03.003 |
[7] |
Stepankova V, Bidmanova S, Koudelakova T, et al. Strategies for stabilization of enzymes in organic solvents[J]. ACS Catal, 2013, 3(12):2823-2836.
doi: 10.1021/cs400684x |
[8] |
Cherry J R, Fidantsef A L. Directed evolution of industrial enzymes: an update[J]. Curr Opin Biotechnol, 2003, 14(4):438-443.
doi: 10.1016/S0958-1669(03)00099-5 |
[9] | Yamada K, Sato T. Alkaline Protease Variant: US20190161708[P]. 2019-09-30. |
[10] | Brix K, Stcker W. Proteases: Structure and Function[M]. Germany: Springer, 2013: 37-85. |
[11] | Hedstrom L. Serine protease mechanism and specificity[J]. Cheminform, 2003, 34(6):4501-4524. |
[12] |
Blay V, Pei D. Serine proteases: how did chemists tease out their catalytic mechanism?[J]. Chemtexts, 2019, 5(4):12-19.
doi: 10.1007/s40828-019-0086-3 |
[13] | Severson R G. Liquid detergents containing boric acid to stabilize enzymes: US4537706[P]. 1985-08-27. |
[14] | Wang P Y. Study on the stability of liquid alkaline protease[J]. Food and Fermentation Industry, 1995 (5):1-7. |
[15] |
Lee S, Kwon O H, Jang D J. Progressive rearrangement of subtilisin Carlsberg into orderly and inflexible conformation with Ca2+ binding[J]. Biophysical Journal, 2001, 81(5):2972-2978.
pmid: 11606307 |
[16] |
Crossin M C. Protease stabilization by carboxylic acid salts: Relative efficiencies and mechanisms[J]. Journal of the American Oil Chemists’ Society, 1989, 66(7):1010-1013.
doi: 10.1007/BF02682628 |
[17] |
Ghorbel B, Sellami-Kamoun A, Nasri M. Stability studies of protease from Bacillus cereus BG1[J]. Enzyme Microb Technol, 2003, 32(5):513-518.
doi: 10.1016/S0141-0229(03)00004-8 |
[18] |
Hammami A, Hamdi M, Abdelhedi O, et al. Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae: Characterization and potential applications in chitin extraction and as a detergent additive[J]. International Journal of Biological Macromolecules, 2017, 96:272-281.
doi: S0141-8130(16)32119-5 pmid: 27988295 |
[19] | Carrea G, Riva S. Properties and synthetic applications of enzymes in organic solvents[J]. Cheminform, 2000, 39(13):2226-2254. |
[20] | Boskamp J V. Aqueous enzyme-containing compositions with improved stability: US 4532064[P]. 1985-07-30. |
[21] |
Gonzaález G, González C, Merino P. Thermostabilization of Cucurbita ficifolia protease in the presence of additives[J]. Biotechnol Lett, 1992, 14(10):919-924.
doi: 10.1007/BF01020629 |
[22] |
Russell G L, Britton L N. Use of certain alcohol ethoxylates to maintain protease stability in the presence of anionic surfactants[J]. Journal of Surfactants and Detergents, 2002, 5(1):5-10.
doi: 10.1007/s11743-002-0198-9 |
[23] |
Laszlo K, Szava A, Simon L M. Stabilization of various alpha-chymotrypsin forms in aqueous-organic media by additives[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 16(3/4):141-146.
doi: 10.1016/S1381-1177(01)00053-4 |
[24] |
Estell D A, Graycar T P, Wells J A. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation[J]. Journal of Biological Chemistry, 1985, 260(11):6518-6521.
pmid: 3922976 |
[25] |
Pantoliano M W, Ladner R C, Bryan P N, et al. Protein engineering of subtilisin BPN’: enhanced stabilization through the introduction of two cysteines to form a disulfide bond[J]. Biochemistry, 1987, 26(8):2077-2082.
pmid: 3476160 |
[26] |
Weng M, Deng X, Bao W, et al. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation[J]. Biochemical and Biophysical Research Communications, 2015, 465(3):580-586.
doi: 10.1016/j.bbrc.2015.08.063 |
[27] |
Bian Y, Liang X, Fang N, et al. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease[J]. FEBS Letters, 2006, 580(25):6007-6014.
pmid: 17052711 |
[28] |
Badieyan S, Bevan D R, Zhang C. Study and design of stability in GH5 cellulases[J]. Biotechnology and Bioengineering, 2012, 109(1):31-44.
doi: 10.1002/bit.v109.1 |
[29] |
Dombkowski A A. Disulfide by Design™: a computational method for the rational design of disulfide bonds in proteins[J]. Bioinformatics, 2003, 19(14):1852-1863.
pmid: 14512360 |
[30] |
Han M, Wang X, Yan G, et al. Modification of recombinant elastase expressed in Pichia pastoris by introduction of N-glycosylation sites[J]. Journal of Biotechnology, 2014, 171:3-7.
doi: 10.1016/j.jbiotec.2013.11.021 |
[31] |
Mukherjee J, Majumder A B, Gupta M N. Adding an appropriate amino acid during crosslinking results in more stable crosslinked enzyme aggregates[J]. Analytical Biochemistry, 2016, 507:27-32.
doi: 10.1016/j.ab.2016.05.012 pmid: 27237371 |
[32] |
Canalle L A, Lwik D W P M, Van Hest J C M. Polypeptide-polymer bioconjugates[J]. Chemical Society Reviews, 2009, 39(1):329-353.
doi: 10.1039/B807871H |
[33] | Hackenberger C, P., R., et al. Chemoselective ligation and modification strategies for peptides and proteins[J]. Angewandte Chemie, 2010, 47(52):10030-10074. |
[34] |
Morgenstern J, Busch M, Baumann P, et al. Quantification of PEGylated proteases with varying degree of conjugation in mixtures: An analytical protocol combining protein precipitation and capillary gel electrophoresis[J]. Journal of Chromatography A, 2016, 1462:153-164.
doi: 10.1016/j.chroma.2016.07.078 pmid: 27521256 |
[35] |
Minten I J, Abello N, Schooneveld-Bergmans M E F, et al. Post-production modification of industrial enzymes[J]. Applied Microbiology and Biotechnology, 2014, 98(14):6215-6231.
doi: 10.1007/s00253-014-5799-z pmid: 24903809 |
[36] |
Kwon O H, Imanishi Y, Ito Y. Catalytic activity and conformation of chemically modified subtilisin Carlsberg in organic media[J]. Biotechnology and Bioengineering, 1999, 66(4):265-270.
pmid: 10578097 |
[37] |
Zaks A, Klibanov A M. Enzyme catalysis in non-aqueous solvents[J]. Journal of Biological Chemistry, 1988, 263(7):3194-3201.
pmid: 3277967 |
[38] |
Yang Z, Domach M, Auger R, et al. Polyethylene glycol-induced stabilization of subtilisin[J]. Enzyme Microb Technol, 1996, 18(2):82-89.
doi: 10.1016/0141-0229(95)00073-9 |
[39] |
Treetharnmathurot B, Ovartlarnporn C, Wungsintaweekul J, et al. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin[J]. International Journal of Pharmaceutics, 2008, 357(1):252-259.
doi: 10.1016/j.ijpharm.2008.01.016 |
[40] |
Nakajima N, Ishihara K, Sugimoto M, et al. Further stabilization of earthworm serine protease by chemical modification and immobilization[J]. Bioscience Biotechnology and Biochemistry, 2002, 66(12):2739-2742.
doi: 10.1271/bbb.66.2739 |
[41] | Yandri Y, Suhartati T, Herasari D, et al. The chemical modification of protease isolated from locale bacteria isolate bacillus subtilis ITBCCB148 with nitrophenolcarbonate-polyethylene glycol (NPC-PEG)[J]. Modern Applied Science, 2011, 5(4):253-258. |
[42] |
Chakraborty A, Basak S. Effect of surfactants on casein structure: A spectroscopic study[J]. Colloid Surf B: Biointerfaces, 2008, 63(1):83-90.
doi: 10.1016/j.colsurfb.2007.11.005 |
[43] |
Schroeder M, Lenting H B M, Kandelbauer A, et al. Restricting detergent protease action to surface of protein fibres by chemical modification[J]. Applied Microbiology and Biotechnology, 2006, 72(4):738-744.
pmid: 16850302 |
[44] |
Venkatesh R, Srimathi S, Yamuna A, et al. Enhanced catalytic and conformational stability of Atlantic cod trypsin upon neoglycosylation[J]. Biochimica Et Biophysica Acta-General Subjects, 2005, 1722(2):113-115.
doi: 10.1016/j.bbagen.2004.11.015 |
[45] | Misloviová D, Masárová J, BukO M, et al. Stability of penicillin G acylase modified with various polysaccharides[J]. Enzyme & Microbial Technology, 2006, 39(4):579-585. |
[46] |
Lim L, Senba H, Kimura Y, et al. Influences of N-linked glycosylation on the biochemical properties of aspartic protease from Aspergillus glaucus MA0196[J]. Process Biochemistry, 2019, 79:74-80.
doi: 10.1016/j.procbio.2018.12.017 |
[47] |
Gizurarson J G K, Filippusson H. Conjugation of d-glucosamine to bovine trypsin increases thermal stability and alters functional properties[J]. Enzyme Microb Technol, 2015, 75-76:1-9.
doi: 10.1016/j.enzmictec.2015.04.005 |
[48] |
Fernández M, Fragoso A, Cao R, et al. Stabilization of α-chymotrypsin by chemical modification with monoamine cyclodextrin[J]. Process Biochemistry, 2005, 40(6):2091-2094.
doi: 10.1016/j.procbio.2004.07.023 |
[49] |
Hernández K, Fernández L, Gómez L, et al. Glycosidation of trypsin with end-group activated dextran[J]. Process Biochemistry, 2006, 41(5):1155-1159.
doi: 10.1016/j.procbio.2005.12.013 |
[50] |
Villalonga R, Villalonga M L, Gómez L. Preparation and functional properties of trypsin modified by carboxymethylcellulose[J]. Journal of Molecular Catalysis B: Enzymatic, 2000, 10(5):483-490.
doi: 10.1016/S1381-1177(00)00003-5 |
[51] |
Khaparde S S, Singhal R S. Chemically modified papain for applications in detergent formulations[J]. Bioresource Technology, 2001, 78(1):1-4.
pmid: 11265779 |
[52] |
Sangeetha K, Abraham T E. Chemical modification of papain for use in alkaline medium[J]. Journal of Molecular Catalysis B: Enzymatic, 2006, 38(3-6):171-177.
doi: 10.1016/j.molcatb.2006.01.003 |
[53] | Xue Y, Li S B, Zhang H T, et al. Chemical modification of papain and effect on its enzyme activity[J]. Acta Chimica Sinica, 2009, 67(20):2390-2394. |
[1] | Wang Xuejiao, Du Lijuan, Xu Yuanxi. Stabilizers screening method development for liquid detergent protease [J]. China Surfactant Detergent & Cosmetics, 2023, 53(7): 796-801. |
[2] | Wang Penghui,Wang Weixian,Yang Tao,Zeng Hui,Rui Zebao,Li Donghua,Huang Ping. Influencing factors on washing performance of alkaline protease in liquid detergent [J]. China Surfactant Detergent & Cosmetics, 2021, 51(11): 1109-1117. |
[3] | Mei-na WU,Lei LI,Yong-mei XIA,Xiang LIU,Hai-jun WANG. Improvement of proteases stability in liquid laundry detergent [J]. China Surfactant Detergent & Cosmetics, 2019, 49(2): 103-107. |
[4] | SONG Jin-yu, PENG Zhi-qiang, SUN Xiao-yu. The performance test of fatty acid methyl ester sulfonate and its application in the liquiddetergent [J]. China Surfactant Detergent & Cosmetics, 2018, 48(12): 691-694. |
[5] | LI Jing, ZHANG Jian, ZHAO Yong-xiang. Interaction between calcium ions and alkaline protease and study of its mechanism [J]. China Surfactant Detergent & Cosmetics, 2018, 48(1): 1-7. |
[6] | YANG Yuan, ZHANG Jian. Study on conditions for determination of lipase activity in detergent products and their effects on application result [J]. China Surfactant Detergent & Cosmetics, 2017, 47(1): 23-27. |
[7] | TAI Xiu-mei,LIU Xiao-ying,DU Zhi-ping,BA Jian-bo,WANG Guo-yong,ZHAO Hui-xian. Formulation and performance of bacteriostasis liquid detergent [J]. China Surfactant Detergent & Cosmetics, 2016, 46(3): 141-144. |
[8] | ZHANG Bao-lian,PENG Li-yuan,ZHANG Jing-feng,LIN Shang-peng. Influence of fluorescent brightening agent on washing result of cotton fabrics [J]. China Surfactant Detergent & Cosmetics, 2016, 46(3): 145-150. |
[9] | BAO Yan,ZHANG Xue. Progress in field of liquid detergent formulated with enzyme [J]. China Surfactant Detergent & Cosmetics, 2016, 46(1): 48-52. |
[10] | YAO Chen-zhi,LI Xiao-hui,ZHANG Jing-feng,PENG Li-yuan,LIN Shang-peng. Influence of fluorescent brightening agent on determination of standard detergency and cycle of washing performance for liquid detergent [J]. China Surfactant Detergent & Cosmetics, 2016, 46(1): 30-34. |
[11] | LI Lin, XU Yuan-mei, LU Li-xia, ZHAO Shun-xiang. Effect of stabilizer on bleaching activation system of sodium per-carbonate in laundry detergent [J]. China Surfactant Detergent & Cosmetics, 2015, 45(7): 385-388. |
[12] | KANG Lin-xia, ZHANG Jian, QIN Jie, ZHANG Sheng. Stability of alkaline protease in liquid laundry detergent [J]. China Surfactant Detergent & Cosmetics, 2014, 44(3): 139-142. |
|