[1] |
Steiling W. Safety evaluation of cosmetic ingredients regarding their skin sensitization potential[J]. Cosmetics, 2016, 3(14) : 1-10.
doi: 10.3390/cosmetics3010001
|
[2] |
van der Veen J W, Pronk T E, van Loveren H, et al. Applicability of a keratinocyte gene signature to predict skin sensitizing potential[J]. Toxicology in Vitro, 2012, 27(2013) : 314-222.
doi: 10.1016/j.tiv.2012.08.023
|
[3] |
Ezendam J, Braakhuis H M, Vandebriel R J. State of the art in non-animal approaches for skin sensitization testing: from individual test methods towards testing strategies[J]. Archives of Toxicology, 2016, 90(12) : 2861-2883.
pmid: 27629427
|
[4] |
Nicole C, Kleinstreuer S H, Nathalie Alépée, et al. Non-animal methods to predict skin sensitization(II): an assessment of defined approaches[J]. Critical Reviews in Toxicology, 2018, 48(5) : 359-374.
doi: 10.1080/10408444.2018.1429386
pmid: 29474122
|
[5] |
Bauch C, Kolle S N, Ramirez T, et al. Putting the parts together: combining in vitro methods to test for skin sensitizing potentials[J]. Regulatory Toxicology and Pharmacology, 2012, 63(3) : 489-504.
doi: 10.1016/j.yrtph.2012.05.013
|
[6] |
Van der Veen J W, Rorije E, Emter R, et al. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals[J]. Regulatory Toxicology and Pharmacology, 2014, 69(3) : 371-379.
doi: 10.1016/j.yrtph.2014.04.018
|
[7] |
Ohtake T, Maeda Y, Hayashi T, et al. Applicability of an integrated testing strategy consisting of in silico, in chemico and in vitro assays for evaluating the skin sensitization potencies of isocyanates[J]. Toxicology, 2018, 393:9-14.
doi: 10.1016/j.tox.2017.10.015
|
[8] |
Takenouchi O, Fukui S, Okamoto K, et al. Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals[J]. Journal of Applied Toxicology, 2015, 35(11) : 1318-1332.
doi: 10.1002/jat.3127
pmid: 25820183
|
[9] |
Gomes C, Noçairi H, Thomas M, et al. A simple and robust scoring technique for binary classification[J]. Artificial Intelligence Research, 2014, 3(1) : 52-58.
|
[10] |
Hirota M, Fukui S, Okamoto K, et al. Evaluation of combinations of in vitro sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization[J]. Journal of Applied Toxicology, 2015, 35(11) : 1333-1347.
doi: 10.1002/jat.v35.11
|
[11] |
Jaworska J, Dancik Y, Kern P, et al. Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice[J]. Journal of Applied Toxicology, 2013, 33(11) : 1353-1364.
doi: 10.1002/jat.2869
pmid: 23670904
|
[12] |
Urbisch D, Mehling A, Guth K, et al. Assessing skin sensitization hazard in mice and men using non-animal test methods[J]. Regulatory Toxicology and Pharmacology, 2015, 71(2) : 337-351.
doi: 10.1016/j.yrtph.2014.12.008
|
[13] |
Zhong Guoru, Li Haojian, Bai Jing, et al. Advancing the predictivity of skin sensitization by applying a novel HMOX1 reporter system[J]. Archives of Toxicology, 2018, 92(10) : 3103-3115.
doi: 10.1007/s00204-018-2287-8
|
[14] |
Yang Hongbin, Lou Chaofeng, Sun Lixia, et al. AdmetSAR 2.0_ web-service for prediction and optimization of chemical ADMET properties[J]. Bioinformatics, 2018, 35(6) : 1067-1069.
doi: 10.1093/bioinformatics/bty707
|
[15] |
Cao Yuping, Ma Pengcheng, Liu Weida, et al. Evaluation of the skin sensitization potential of chemicals in THP-1/keratinocyte co-cultures[J]. Immunopharmacology and Immunotoxicology, 2012, 34(2) : 196-204.
doi: 10.3109/08923973.2011.591800
pmid: 21721923
|